Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.4 * weight - 53
This means that on average for every extra kilogram weight a rider loses 1.4 positions in the result.
Skalniak-Sójka
1
54 kgKarasiewicz
3
69 kgRissveds
7
55 kgSchweinberger
9
67 kgGhekiere
10
52 kgMichiels
11
60 kgBravec
17
56 kgBrandt Heisel
22
52 kgEklund
31
58 kgPikulik
32
54 kgVandenbulcke
44
60 kgLorenzen
62
71 kgvan Neck
69
63 kgPisciali
80
63 kgGedraitytė
90
59 kg
1
54 kgKarasiewicz
3
69 kgRissveds
7
55 kgSchweinberger
9
67 kgGhekiere
10
52 kgMichiels
11
60 kgBravec
17
56 kgBrandt Heisel
22
52 kgEklund
31
58 kgPikulik
32
54 kgVandenbulcke
44
60 kgLorenzen
62
71 kgvan Neck
69
63 kgPisciali
80
63 kgGedraitytė
90
59 kg
Weight (KG) →
Result →
71
52
1
90
# | Rider | Weight (KG) |
---|---|---|
1 | SKALNIAK-SÓJKA Agnieszka | 54 |
3 | KARASIEWICZ Karolina | 69 |
7 | RISSVEDS Jenny | 55 |
9 | SCHWEINBERGER Christina | 67 |
10 | GHEKIERE Justine | 52 |
11 | MICHIELS Githa | 60 |
17 | BRAVEC Urška | 56 |
22 | BRANDT HEISEL Maja Winther | 52 |
31 | EKLUND Nathalie | 58 |
32 | PIKULIK Daria | 54 |
44 | VANDENBULCKE Jesse | 60 |
62 | LORENZEN Christina Bragh | 71 |
69 | VAN NECK Melissa | 63 |
80 | PISCIALI Francesca | 63 |
90 | GEDRAITYTĖ Akvilė | 59 |