Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.6 * weight - 30
This means that on average for every extra kilogram weight a rider loses 0.6 positions in the result.
Cort
1
68 kgLonardi
2
70 kgValverde
3
61 kgGonçalves
4
70 kgMoreno
5
59 kgFernández
6
60 kgAular
7
65 kgAngulo
8
67 kgFreitas
9
64 kgBol
10
71 kgBarrenetxea
11
74 kgSerrano
12
65 kgBarceló
13
65 kgFernández
16
69 kgFuentes
17
77 kgMartingil
18
67 kgHaga
19
71.5 kgBerrade
20
72 kg
1
68 kgLonardi
2
70 kgValverde
3
61 kgGonçalves
4
70 kgMoreno
5
59 kgFernández
6
60 kgAular
7
65 kgAngulo
8
67 kgFreitas
9
64 kgBol
10
71 kgBarrenetxea
11
74 kgSerrano
12
65 kgBarceló
13
65 kgFernández
16
69 kgFuentes
17
77 kgMartingil
18
67 kgHaga
19
71.5 kgBerrade
20
72 kg
Weight (KG) →
Result →
77
59
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | CORT Magnus | 68 |
2 | LONARDI Giovanni | 70 |
3 | VALVERDE Alejandro | 61 |
4 | GONÇALVES José | 70 |
5 | MORENO Adrià | 59 |
6 | FERNÁNDEZ Rubén | 60 |
7 | AULAR Orluis | 65 |
8 | ANGULO Antonio | 67 |
9 | FREITAS Daniel | 64 |
10 | BOL Jetse | 71 |
11 | BARRENETXEA Jon | 74 |
12 | SERRANO Gonzalo | 65 |
13 | BARCELÓ Fernando | 65 |
16 | FERNÁNDEZ Delio | 69 |
17 | FUENTES Ángel | 77 |
18 | MARTINGIL César | 67 |
19 | HAGA Chad | 71.5 |
20 | BERRADE Urko | 72 |