Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight - 1
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Vingegaard
1
58 kgPacher
2
62 kgCanal
3
70 kgBernal
4
60 kgCepeda
5
61 kgUijtdebroeks
6
68 kgGarcía Pierna
7
67 kgSilva
9
64 kgGuerreiro
10
65 kgGaudu
11
53 kgMolenaar
12
63 kgMartinez
13
52 kgBou
14
62 kgCarapaz
15
62 kgFabbro
16
52 kgBrambilla
17
57 kgPiccolo
19
64 kgCarthy
20
69 kgCastrillo
21
74 kgde la Cruz
22
66 kgTarling
23
78 kgArcas
24
68 kgTulett
25
56 kg
1
58 kgPacher
2
62 kgCanal
3
70 kgBernal
4
60 kgCepeda
5
61 kgUijtdebroeks
6
68 kgGarcía Pierna
7
67 kgSilva
9
64 kgGuerreiro
10
65 kgGaudu
11
53 kgMolenaar
12
63 kgMartinez
13
52 kgBou
14
62 kgCarapaz
15
62 kgFabbro
16
52 kgBrambilla
17
57 kgPiccolo
19
64 kgCarthy
20
69 kgCastrillo
21
74 kgde la Cruz
22
66 kgTarling
23
78 kgArcas
24
68 kgTulett
25
56 kg
Weight (KG) →
Result →
78
52
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | VINGEGAARD Jonas | 58 |
2 | PACHER Quentin | 62 |
3 | CANAL Carlos | 70 |
4 | BERNAL Egan | 60 |
5 | CEPEDA Jefferson Alveiro | 61 |
6 | UIJTDEBROEKS Cian | 68 |
7 | GARCÍA PIERNA Raúl | 67 |
9 | SILVA Guillermo Thomas | 64 |
10 | GUERREIRO Ruben | 65 |
11 | GAUDU David | 53 |
12 | MOLENAAR Alex | 63 |
13 | MARTINEZ Lenny | 52 |
14 | BOU Joan | 62 |
15 | CARAPAZ Richard | 62 |
16 | FABBRO Matteo | 52 |
17 | BRAMBILLA Gianluca | 57 |
19 | PICCOLO Andrea | 64 |
20 | CARTHY Hugh | 69 |
21 | CASTRILLO Pablo | 74 |
22 | DE LA CRUZ David | 66 |
23 | TARLING Joshua | 78 |
24 | ARCAS Jorge | 68 |
25 | TULETT Ben | 56 |