Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.6 * weight + 149
This means that on average for every extra kilogram weight a rider loses -1.6 positions in the result.
Bugno
1
68 kgDuclos-Lassalle
6
73 kgCaroli
13
77 kgVandi
14
64 kgGlaus
17
67 kgSørensen
20
70 kgBaffi
23
70 kgAlgeri
25
68 kgGavazzi
27
67 kgBallerini
28
78 kgChiappucci
34
67 kgPagnin
42
74 kgCenghialta
50
73 kgBaronchelli
67
72 kgSchepers
73
60 kgMarcussen
82
70 kgSegersall
99
65 kg
1
68 kgDuclos-Lassalle
6
73 kgCaroli
13
77 kgVandi
14
64 kgGlaus
17
67 kgSørensen
20
70 kgBaffi
23
70 kgAlgeri
25
68 kgGavazzi
27
67 kgBallerini
28
78 kgChiappucci
34
67 kgPagnin
42
74 kgCenghialta
50
73 kgBaronchelli
67
72 kgSchepers
73
60 kgMarcussen
82
70 kgSegersall
99
65 kg
Weight (KG) →
Result →
78
60
1
99
# | Rider | Weight (KG) |
---|---|---|
1 | BUGNO Gianni | 68 |
6 | DUCLOS-LASSALLE Gilbert | 73 |
13 | CAROLI Daniele | 77 |
14 | VANDI Alfio | 64 |
17 | GLAUS Gilbert | 67 |
20 | SØRENSEN Rolf | 70 |
23 | BAFFI Adriano | 70 |
25 | ALGERI Vittorio | 68 |
27 | GAVAZZI Pierino | 67 |
28 | BALLERINI Franco | 78 |
34 | CHIAPPUCCI Claudio | 67 |
42 | PAGNIN Roberto | 74 |
50 | CENGHIALTA Bruno | 73 |
67 | BARONCHELLI Gianbattista | 72 |
73 | SCHEPERS Eddy | 60 |
82 | MARCUSSEN Jørgen | 70 |
99 | SEGERSALL Alf | 65 |