Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.7 * weight + 65
This means that on average for every extra kilogram weight a rider loses -0.7 positions in the result.
van den Broek-Blaak
3
64 kgWild
4
75 kgGilmore
5
56 kgJohansson
7
58 kgMartisova
8
64 kgJeuland-Tranchant
9
61 kgHenrion
12
60 kgVilajosana
14
57 kgSmall
18
55 kgDe Vocht
22
61 kgAntoshina
28
55 kgSlappendel
31
67 kgLichtenberg
36
52 kgArmstrong
37
58 kgMartin
38
57 kgPučinskaitė
44
54 kgKoedooder
51
69 kgvan der Breggen
52
56 kg
3
64 kgWild
4
75 kgGilmore
5
56 kgJohansson
7
58 kgMartisova
8
64 kgJeuland-Tranchant
9
61 kgHenrion
12
60 kgVilajosana
14
57 kgSmall
18
55 kgDe Vocht
22
61 kgAntoshina
28
55 kgSlappendel
31
67 kgLichtenberg
36
52 kgArmstrong
37
58 kgMartin
38
57 kgPučinskaitė
44
54 kgKoedooder
51
69 kgvan der Breggen
52
56 kg
Weight (KG) →
Result →
75
52
3
52
# | Rider | Weight (KG) |
---|---|---|
3 | VAN DEN BROEK-BLAAK Chantal | 64 |
4 | WILD Kirsten | 75 |
5 | GILMORE Rochelle | 56 |
7 | JOHANSSON Emma | 58 |
8 | MARTISOVA Julia | 64 |
9 | JEULAND-TRANCHANT Pascale | 61 |
12 | HENRION Ludivine | 60 |
14 | VILAJOSANA Marta | 57 |
18 | SMALL Carmen | 55 |
22 | DE VOCHT Liesbet | 61 |
28 | ANTOSHINA Tatiana | 55 |
31 | SLAPPENDEL Iris | 67 |
36 | LICHTENBERG Claudia | 52 |
37 | ARMSTRONG Kristin | 58 |
38 | MARTIN Lucy | 57 |
44 | PUČINSKAITĖ Edita | 54 |
51 | KOEDOODER Vera | 69 |
52 | VAN DER BREGGEN Anna | 56 |