Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 50
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Baccaille
1
61 kgMajerus
4
56 kgvan Vleuten
6
59 kgSmall
8
55 kgHohl
11
55 kgKasper
12
59 kgHenrion
15
60 kgZabirova
16
65 kgLe Floc'h
22
59 kgSalvetat
24
55 kgFerrier-Bruneau
30
53 kgPitel
31
52 kgMelchers
42
59 kgBecker
44
64 kgWrubleski
48
55 kgCantele
55
58 kgCordon-Ragot
58
60 kgAntoshina
61
55 kg
1
61 kgMajerus
4
56 kgvan Vleuten
6
59 kgSmall
8
55 kgHohl
11
55 kgKasper
12
59 kgHenrion
15
60 kgZabirova
16
65 kgLe Floc'h
22
59 kgSalvetat
24
55 kgFerrier-Bruneau
30
53 kgPitel
31
52 kgMelchers
42
59 kgBecker
44
64 kgWrubleski
48
55 kgCantele
55
58 kgCordon-Ragot
58
60 kgAntoshina
61
55 kg
Weight (KG) →
Result →
65
52
1
61
# | Rider | Weight (KG) |
---|---|---|
1 | BACCAILLE Monia | 61 |
4 | MAJERUS Christine | 56 |
6 | VAN VLEUTEN Annemiek | 59 |
8 | SMALL Carmen | 55 |
11 | HOHL Jennifer | 55 |
12 | KASPER Romy | 59 |
15 | HENRION Ludivine | 60 |
16 | ZABIROVA Zulfiya | 65 |
22 | LE FLOC'H Magali | 59 |
24 | SALVETAT Maryline | 55 |
30 | FERRIER-BRUNEAU Christel | 53 |
31 | PITEL Edwige | 52 |
42 | MELCHERS Mirjam | 59 |
44 | BECKER Charlotte | 64 |
48 | WRUBLESKI Alex | 55 |
55 | CANTELE Noemi | 58 |
58 | CORDON-RAGOT Audrey | 60 |
61 | ANTOSHINA Tatiana | 55 |