Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 24
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Norsgaard
1
65 kgLabous
3
54 kgBertizzolo
4
54 kgBalsamo
10
55 kgPersico
11
53 kgJaskulska
13
52 kgCopponi
14
55 kgHarris
15
57 kgLudwig
16
55 kgvan der Hulst
17
66 kgBaril
18
56 kgvan Bokhoven
19
51 kgGerritse
20
59 kgConsonni
24
59 kgPollicini
25
57 kgTeutenberg
29
53 kg
1
65 kgLabous
3
54 kgBertizzolo
4
54 kgBalsamo
10
55 kgPersico
11
53 kgJaskulska
13
52 kgCopponi
14
55 kgHarris
15
57 kgLudwig
16
55 kgvan der Hulst
17
66 kgBaril
18
56 kgvan Bokhoven
19
51 kgGerritse
20
59 kgConsonni
24
59 kgPollicini
25
57 kgTeutenberg
29
53 kg
Weight (KG) →
Result →
66
51
1
29
# | Rider | Weight (KG) |
---|---|---|
1 | NORSGAARD Emma | 65 |
3 | LABOUS Juliette | 54 |
4 | BERTIZZOLO Sofia | 54 |
10 | BALSAMO Elisa | 55 |
11 | PERSICO Silvia | 53 |
13 | JASKULSKA Marta | 52 |
14 | COPPONI Clara | 55 |
15 | HARRIS Ella | 57 |
16 | LUDWIG Hannah | 55 |
17 | VAN DER HULST Amber | 66 |
18 | BARIL Olivia | 56 |
19 | VAN BOKHOVEN Julia | 51 |
20 | GERRITSE Femke | 59 |
24 | CONSONNI Chiara | 59 |
25 | POLLICINI Silvia | 57 |
29 | TEUTENBERG Lea Lin | 53 |