Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.8 * weight - 16
This means that on average for every extra kilogram weight a rider loses 0.8 positions in the result.
Buts
2
68 kgBouglas
3
71 kgNikolaev
6
66 kgTatarinov
7
67 kgKrivtsov
8
72 kgRamanau
9
68 kgVasylyuk
11
65 kgGottfried
14
60 kgSerov
16
77 kgSapa
18
82 kgArslanov
23
63 kgGradek
24
83 kgBernas
29
77 kgKatyrin
36
65 kgErshov
37
70 kgBogdanovičs
40
68 kgAhiyevich
42
70 kgZemlyakov
74
70 kgJanorschke
77
78 kgBanaszek
92
79 kgMamykin
104
62 kgMuzychkin
105
76 kgPütsep
113
69 kg
2
68 kgBouglas
3
71 kgNikolaev
6
66 kgTatarinov
7
67 kgKrivtsov
8
72 kgRamanau
9
68 kgVasylyuk
11
65 kgGottfried
14
60 kgSerov
16
77 kgSapa
18
82 kgArslanov
23
63 kgGradek
24
83 kgBernas
29
77 kgKatyrin
36
65 kgErshov
37
70 kgBogdanovičs
40
68 kgAhiyevich
42
70 kgZemlyakov
74
70 kgJanorschke
77
78 kgBanaszek
92
79 kgMamykin
104
62 kgMuzychkin
105
76 kgPütsep
113
69 kg
Weight (KG) →
Result →
83
60
2
113
# | Rider | Weight (KG) |
---|---|---|
2 | BUTS Vitaliy | 68 |
3 | BOUGLAS Georgios | 71 |
6 | NIKOLAEV Sergey | 66 |
7 | TATARINOV Gennadiy | 67 |
8 | KRIVTSOV Dmytro | 72 |
9 | RAMANAU Raman | 68 |
11 | VASYLYUK Andriy | 65 |
14 | GOTTFRIED Alexander | 60 |
16 | SEROV Alexander | 77 |
18 | SAPA Marcin | 82 |
23 | ARSLANOV Ildar | 63 |
24 | GRADEK Kamil | 83 |
29 | BERNAS Paweł | 77 |
36 | KATYRIN Roman | 65 |
37 | ERSHOV Artur | 70 |
40 | BOGDANOVIČS Māris | 68 |
42 | AHIYEVICH Aleh | 70 |
74 | ZEMLYAKOV Oleg | 70 |
77 | JANORSCHKE Grischa | 78 |
92 | BANASZEK Adrian | 79 |
104 | MAMYKIN Matvey | 62 |
105 | MUZYCHKIN Anton | 76 |
113 | PÜTSEP Erki | 69 |