Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight + 2
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
Buts
1
68 kgNikolaev
4
66 kgGradek
5
83 kgBouglas
6
71 kgBernas
7
77 kgTatarinov
8
67 kgJanorschke
10
78 kgArslanov
15
63 kgSerov
16
77 kgVasylyuk
18
65 kgErshov
24
70 kgKrivtsov
29
72 kgBogdanovičs
35
68 kgGottfried
36
60 kgZemlyakov
52
70 kgKatyrin
54
65 kgAhiyevich
62
70 kgMamykin
66
62 kgBanaszek
76
79 kgSapa
82
82 kgMuzychkin
109
76 kgPütsep
110
69 kg
1
68 kgNikolaev
4
66 kgGradek
5
83 kgBouglas
6
71 kgBernas
7
77 kgTatarinov
8
67 kgJanorschke
10
78 kgArslanov
15
63 kgSerov
16
77 kgVasylyuk
18
65 kgErshov
24
70 kgKrivtsov
29
72 kgBogdanovičs
35
68 kgGottfried
36
60 kgZemlyakov
52
70 kgKatyrin
54
65 kgAhiyevich
62
70 kgMamykin
66
62 kgBanaszek
76
79 kgSapa
82
82 kgMuzychkin
109
76 kgPütsep
110
69 kg
Weight (KG) →
Result →
83
60
1
110
# | Rider | Weight (KG) |
---|---|---|
1 | BUTS Vitaliy | 68 |
4 | NIKOLAEV Sergey | 66 |
5 | GRADEK Kamil | 83 |
6 | BOUGLAS Georgios | 71 |
7 | BERNAS Paweł | 77 |
8 | TATARINOV Gennadiy | 67 |
10 | JANORSCHKE Grischa | 78 |
15 | ARSLANOV Ildar | 63 |
16 | SEROV Alexander | 77 |
18 | VASYLYUK Andriy | 65 |
24 | ERSHOV Artur | 70 |
29 | KRIVTSOV Dmytro | 72 |
35 | BOGDANOVIČS Māris | 68 |
36 | GOTTFRIED Alexander | 60 |
52 | ZEMLYAKOV Oleg | 70 |
54 | KATYRIN Roman | 65 |
62 | AHIYEVICH Aleh | 70 |
66 | MAMYKIN Matvey | 62 |
76 | BANASZEK Adrian | 79 |
82 | SAPA Marcin | 82 |
109 | MUZYCHKIN Anton | 76 |
110 | PÜTSEP Erki | 69 |