Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 51
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Buts
2
68 kgJanorschke
4
78 kgNikolaev
7
66 kgBouglas
8
71 kgSerov
11
77 kgErshov
13
70 kgKrivtsov
14
72 kgBogdanovičs
16
68 kgTatarinov
20
67 kgArslanov
31
63 kgGradek
33
83 kgAhiyevich
37
70 kgVasylyuk
41
65 kgGottfried
49
60 kgSapa
58
82 kgKatyrin
59
65 kgZemlyakov
62
70 kgMamykin
67
62 kgBernas
74
77 kg
2
68 kgJanorschke
4
78 kgNikolaev
7
66 kgBouglas
8
71 kgSerov
11
77 kgErshov
13
70 kgKrivtsov
14
72 kgBogdanovičs
16
68 kgTatarinov
20
67 kgArslanov
31
63 kgGradek
33
83 kgAhiyevich
37
70 kgVasylyuk
41
65 kgGottfried
49
60 kgSapa
58
82 kgKatyrin
59
65 kgZemlyakov
62
70 kgMamykin
67
62 kgBernas
74
77 kg
Weight (KG) →
Result →
83
60
2
74
# | Rider | Weight (KG) |
---|---|---|
2 | BUTS Vitaliy | 68 |
4 | JANORSCHKE Grischa | 78 |
7 | NIKOLAEV Sergey | 66 |
8 | BOUGLAS Georgios | 71 |
11 | SEROV Alexander | 77 |
13 | ERSHOV Artur | 70 |
14 | KRIVTSOV Dmytro | 72 |
16 | BOGDANOVIČS Māris | 68 |
20 | TATARINOV Gennadiy | 67 |
31 | ARSLANOV Ildar | 63 |
33 | GRADEK Kamil | 83 |
37 | AHIYEVICH Aleh | 70 |
41 | VASYLYUK Andriy | 65 |
49 | GOTTFRIED Alexander | 60 |
58 | SAPA Marcin | 82 |
59 | KATYRIN Roman | 65 |
62 | ZEMLYAKOV Oleg | 70 |
67 | MAMYKIN Matvey | 62 |
74 | BERNAS Paweł | 77 |