Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.8 * weight + 79
This means that on average for every extra kilogram weight a rider loses -0.8 positions in the result.
Edmondson
1
62 kgBosman
3
68 kgRiesebeek
4
78 kgChavanne
5
83 kgTeuns
11
64 kgOttema
12
77 kgPellaud
14
70 kgJungels
17
70 kgStuyven
18
78 kgTeunissen
20
73 kgHoller
21
58 kgSchoonbroodt
22
78 kgJaun
23
66 kgRaeymaekers
24
68 kgStöhr
28
72 kgKirsch
42
78 kgvan der Haar
55
58 kgSuter
61
70 kgStöhr
87
66 kg
1
62 kgBosman
3
68 kgRiesebeek
4
78 kgChavanne
5
83 kgTeuns
11
64 kgOttema
12
77 kgPellaud
14
70 kgJungels
17
70 kgStuyven
18
78 kgTeunissen
20
73 kgHoller
21
58 kgSchoonbroodt
22
78 kgJaun
23
66 kgRaeymaekers
24
68 kgStöhr
28
72 kgKirsch
42
78 kgvan der Haar
55
58 kgSuter
61
70 kgStöhr
87
66 kg
Weight (KG) →
Result →
83
58
1
87
# | Rider | Weight (KG) |
---|---|---|
1 | EDMONDSON Joshua | 62 |
3 | BOSMAN Gert-Jan | 68 |
4 | RIESEBEEK Oscar | 78 |
5 | CHAVANNE Gabriel | 83 |
11 | TEUNS Dylan | 64 |
12 | OTTEMA Rick | 77 |
14 | PELLAUD Simon | 70 |
17 | JUNGELS Bob | 70 |
18 | STUYVEN Jasper | 78 |
20 | TEUNISSEN Mike | 73 |
21 | HOLLER Nikodemus | 58 |
22 | SCHOONBROODT Bob | 78 |
23 | JAUN Lukas | 66 |
24 | RAEYMAEKERS Mattias | 68 |
28 | STÖHR Ján | 72 |
42 | KIRSCH Alex | 78 |
55 | VAN DER HAAR Lars | 58 |
61 | SUTER Gaël | 70 |
87 | STÖHR Pavel | 66 |