Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.4 * weight + 131
This means that on average for every extra kilogram weight a rider loses -1.4 positions in the result.
Riesebeek
2
78 kgJungels
4
70 kgStuyven
6
78 kgTeunissen
7
73 kgSchoonbroodt
13
78 kgBosman
15
68 kgChavanne
18
83 kgKirsch
20
78 kgHoller
21
58 kgvan der Haar
23
58 kgRaeymaekers
26
68 kgPellaud
30
70 kgOttema
31
77 kgJaun
43
66 kgTeuns
50
64 kgStöhr
59
72 kgStöhr
63
66 kgEdmondson
82
62 kgSuter
89
70 kg
2
78 kgJungels
4
70 kgStuyven
6
78 kgTeunissen
7
73 kgSchoonbroodt
13
78 kgBosman
15
68 kgChavanne
18
83 kgKirsch
20
78 kgHoller
21
58 kgvan der Haar
23
58 kgRaeymaekers
26
68 kgPellaud
30
70 kgOttema
31
77 kgJaun
43
66 kgTeuns
50
64 kgStöhr
59
72 kgStöhr
63
66 kgEdmondson
82
62 kgSuter
89
70 kg
Weight (KG) →
Result →
83
58
2
89
# | Rider | Weight (KG) |
---|---|---|
2 | RIESEBEEK Oscar | 78 |
4 | JUNGELS Bob | 70 |
6 | STUYVEN Jasper | 78 |
7 | TEUNISSEN Mike | 73 |
13 | SCHOONBROODT Bob | 78 |
15 | BOSMAN Gert-Jan | 68 |
18 | CHAVANNE Gabriel | 83 |
20 | KIRSCH Alex | 78 |
21 | HOLLER Nikodemus | 58 |
23 | VAN DER HAAR Lars | 58 |
26 | RAEYMAEKERS Mattias | 68 |
30 | PELLAUD Simon | 70 |
31 | OTTEMA Rick | 77 |
43 | JAUN Lukas | 66 |
50 | TEUNS Dylan | 64 |
59 | STÖHR Ján | 72 |
63 | STÖHR Pavel | 66 |
82 | EDMONDSON Joshua | 62 |
89 | SUTER Gaël | 70 |