Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -2.2 * weight + 180
This means that on average for every extra kilogram weight a rider loses -2.2 positions in the result.
Schoonbroodt
2
78 kgRiesebeek
3
78 kgChavanne
6
83 kgSuter
7
70 kgJungels
8
70 kgRaeymaekers
9
68 kgKirsch
10
78 kgOttema
14
77 kgJaun
24
66 kgStuyven
25
78 kgTeuns
26
64 kgPellaud
32
70 kgTeunissen
39
73 kgEdmondson
40
62 kgvan der Haar
46
58 kgBosman
48
68 kgStöhr
53
72 kgStöhr
67
66 kgHoller
82
58 kg
2
78 kgRiesebeek
3
78 kgChavanne
6
83 kgSuter
7
70 kgJungels
8
70 kgRaeymaekers
9
68 kgKirsch
10
78 kgOttema
14
77 kgJaun
24
66 kgStuyven
25
78 kgTeuns
26
64 kgPellaud
32
70 kgTeunissen
39
73 kgEdmondson
40
62 kgvan der Haar
46
58 kgBosman
48
68 kgStöhr
53
72 kgStöhr
67
66 kgHoller
82
58 kg
Weight (KG) →
Result →
83
58
2
82
# | Rider | Weight (KG) |
---|---|---|
2 | SCHOONBROODT Bob | 78 |
3 | RIESEBEEK Oscar | 78 |
6 | CHAVANNE Gabriel | 83 |
7 | SUTER Gaël | 70 |
8 | JUNGELS Bob | 70 |
9 | RAEYMAEKERS Mattias | 68 |
10 | KIRSCH Alex | 78 |
14 | OTTEMA Rick | 77 |
24 | JAUN Lukas | 66 |
25 | STUYVEN Jasper | 78 |
26 | TEUNS Dylan | 64 |
32 | PELLAUD Simon | 70 |
39 | TEUNISSEN Mike | 73 |
40 | EDMONDSON Joshua | 62 |
46 | VAN DER HAAR Lars | 58 |
48 | BOSMAN Gert-Jan | 68 |
53 | STÖHR Ján | 72 |
67 | STÖHR Pavel | 66 |
82 | HOLLER Nikodemus | 58 |