Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight - 2
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Bosman
2
68 kgJaun
4
66 kgEdmondson
6
62 kgHoller
7
58 kgStuyven
12
78 kgRiesebeek
14
78 kgPellaud
18
70 kgTeunissen
19
73 kgStöhr
20
72 kgChavanne
21
83 kgJungels
22
70 kgSchoonbroodt
25
78 kgStöhr
26
66 kgOttema
30
77 kgTeuns
32
64 kgvan der Haar
35
58 kgRaeymaekers
38
68 kgKirsch
57
78 kgSuter
63
70 kg
2
68 kgJaun
4
66 kgEdmondson
6
62 kgHoller
7
58 kgStuyven
12
78 kgRiesebeek
14
78 kgPellaud
18
70 kgTeunissen
19
73 kgStöhr
20
72 kgChavanne
21
83 kgJungels
22
70 kgSchoonbroodt
25
78 kgStöhr
26
66 kgOttema
30
77 kgTeuns
32
64 kgvan der Haar
35
58 kgRaeymaekers
38
68 kgKirsch
57
78 kgSuter
63
70 kg
Weight (KG) →
Result →
83
58
2
63
# | Rider | Weight (KG) |
---|---|---|
2 | BOSMAN Gert-Jan | 68 |
4 | JAUN Lukas | 66 |
6 | EDMONDSON Joshua | 62 |
7 | HOLLER Nikodemus | 58 |
12 | STUYVEN Jasper | 78 |
14 | RIESEBEEK Oscar | 78 |
18 | PELLAUD Simon | 70 |
19 | TEUNISSEN Mike | 73 |
20 | STÖHR Ján | 72 |
21 | CHAVANNE Gabriel | 83 |
22 | JUNGELS Bob | 70 |
25 | SCHOONBROODT Bob | 78 |
26 | STÖHR Pavel | 66 |
30 | OTTEMA Rick | 77 |
32 | TEUNS Dylan | 64 |
35 | VAN DER HAAR Lars | 58 |
38 | RAEYMAEKERS Mattias | 68 |
57 | KIRSCH Alex | 78 |
63 | SUTER Gaël | 70 |