Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 75
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Jungels
1
70 kgOlivier
2
64 kgNorman Leth
4
75 kgChavanne
5
83 kgVliegen
9
70 kgKüng
11
83 kgSuter
15
70 kgVan Rooy
16
70 kgStüssi
18
68 kgLienhard
19
73 kgKirsch
20
78 kgChirico
32
58 kgZahálka
34
73 kgGroßschartner
36
64 kgTusveld
37
70 kgBaillifard
45
54 kgGogl
55
71 kgvan der Hoorn
60
73 kgThalmann
61
61 kgMeijers
72
68 kgFolsach
73
81 kgPellaud
76
70 kg
1
70 kgOlivier
2
64 kgNorman Leth
4
75 kgChavanne
5
83 kgVliegen
9
70 kgKüng
11
83 kgSuter
15
70 kgVan Rooy
16
70 kgStüssi
18
68 kgLienhard
19
73 kgKirsch
20
78 kgChirico
32
58 kgZahálka
34
73 kgGroßschartner
36
64 kgTusveld
37
70 kgBaillifard
45
54 kgGogl
55
71 kgvan der Hoorn
60
73 kgThalmann
61
61 kgMeijers
72
68 kgFolsach
73
81 kgPellaud
76
70 kg
Weight (KG) →
Result →
83
54
1
76
# | Rider | Weight (KG) |
---|---|---|
1 | JUNGELS Bob | 70 |
2 | OLIVIER Daan | 64 |
4 | NORMAN LETH Lasse | 75 |
5 | CHAVANNE Gabriel | 83 |
9 | VLIEGEN Loïc | 70 |
11 | KÜNG Stefan | 83 |
15 | SUTER Gaël | 70 |
16 | VAN ROOY Kenneth | 70 |
18 | STÜSSI Colin | 68 |
19 | LIENHARD Fabian | 73 |
20 | KIRSCH Alex | 78 |
32 | CHIRICO Luca | 58 |
34 | ZAHÁLKA Matěj | 73 |
36 | GROßSCHARTNER Felix | 64 |
37 | TUSVELD Martijn | 70 |
45 | BAILLIFARD Valentin | 54 |
55 | GOGL Michael | 71 |
60 | VAN DER HOORN Taco | 73 |
61 | THALMANN Roland | 61 |
72 | MEIJERS Jeroen | 68 |
73 | FOLSACH Casper | 81 |
76 | PELLAUD Simon | 70 |