Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight - 4
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Norman Leth
1
75 kgJungels
3
70 kgOlivier
4
64 kgChavanne
5
83 kgChirico
8
58 kgVan Rooy
9
70 kgPellaud
11
70 kgvan der Hoorn
12
73 kgBaillifard
14
54 kgVliegen
17
70 kgSuter
18
70 kgKirsch
22
78 kgGroßschartner
27
64 kgLienhard
28
73 kgMeijers
30
68 kgKüng
31
83 kgTusveld
32
70 kgGogl
34
71 kgZahálka
42
73 kgThalmann
52
61 kgStüssi
65
68 kgFolsach
79
81 kg
1
75 kgJungels
3
70 kgOlivier
4
64 kgChavanne
5
83 kgChirico
8
58 kgVan Rooy
9
70 kgPellaud
11
70 kgvan der Hoorn
12
73 kgBaillifard
14
54 kgVliegen
17
70 kgSuter
18
70 kgKirsch
22
78 kgGroßschartner
27
64 kgLienhard
28
73 kgMeijers
30
68 kgKüng
31
83 kgTusveld
32
70 kgGogl
34
71 kgZahálka
42
73 kgThalmann
52
61 kgStüssi
65
68 kgFolsach
79
81 kg
Weight (KG) →
Result →
83
54
1
79
# | Rider | Weight (KG) |
---|---|---|
1 | NORMAN LETH Lasse | 75 |
3 | JUNGELS Bob | 70 |
4 | OLIVIER Daan | 64 |
5 | CHAVANNE Gabriel | 83 |
8 | CHIRICO Luca | 58 |
9 | VAN ROOY Kenneth | 70 |
11 | PELLAUD Simon | 70 |
12 | VAN DER HOORN Taco | 73 |
14 | BAILLIFARD Valentin | 54 |
17 | VLIEGEN Loïc | 70 |
18 | SUTER Gaël | 70 |
22 | KIRSCH Alex | 78 |
27 | GROßSCHARTNER Felix | 64 |
28 | LIENHARD Fabian | 73 |
30 | MEIJERS Jeroen | 68 |
31 | KÜNG Stefan | 83 |
32 | TUSVELD Martijn | 70 |
34 | GOGL Michael | 71 |
42 | ZAHÁLKA Matěj | 73 |
52 | THALMANN Roland | 61 |
65 | STÜSSI Colin | 68 |
79 | FOLSACH Casper | 81 |