Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.2 * weight + 117
This means that on average for every extra kilogram weight a rider loses -1.2 positions in the result.
Lienhard
1
73 kgVliegen
4
70 kgvan der Hoorn
5
73 kgVan Rooy
8
70 kgOlivier
9
64 kgZahálka
15
73 kgJungels
16
70 kgStüssi
18
68 kgNorman Leth
19
75 kgChavanne
20
83 kgFolsach
22
81 kgMeijers
27
68 kgSuter
28
70 kgPellaud
30
70 kgGroßschartner
41
64 kgKüng
45
83 kgGogl
46
71 kgTusveld
47
70 kgThalmann
59
61 kgKirsch
66
78 kgChirico
70
58 kgBaillifard
77
54 kg
1
73 kgVliegen
4
70 kgvan der Hoorn
5
73 kgVan Rooy
8
70 kgOlivier
9
64 kgZahálka
15
73 kgJungels
16
70 kgStüssi
18
68 kgNorman Leth
19
75 kgChavanne
20
83 kgFolsach
22
81 kgMeijers
27
68 kgSuter
28
70 kgPellaud
30
70 kgGroßschartner
41
64 kgKüng
45
83 kgGogl
46
71 kgTusveld
47
70 kgThalmann
59
61 kgKirsch
66
78 kgChirico
70
58 kgBaillifard
77
54 kg
Weight (KG) →
Result →
83
54
1
77
# | Rider | Weight (KG) |
---|---|---|
1 | LIENHARD Fabian | 73 |
4 | VLIEGEN Loïc | 70 |
5 | VAN DER HOORN Taco | 73 |
8 | VAN ROOY Kenneth | 70 |
9 | OLIVIER Daan | 64 |
15 | ZAHÁLKA Matěj | 73 |
16 | JUNGELS Bob | 70 |
18 | STÜSSI Colin | 68 |
19 | NORMAN LETH Lasse | 75 |
20 | CHAVANNE Gabriel | 83 |
22 | FOLSACH Casper | 81 |
27 | MEIJERS Jeroen | 68 |
28 | SUTER Gaël | 70 |
30 | PELLAUD Simon | 70 |
41 | GROßSCHARTNER Felix | 64 |
45 | KÜNG Stefan | 83 |
46 | GOGL Michael | 71 |
47 | TUSVELD Martijn | 70 |
59 | THALMANN Roland | 61 |
66 | KIRSCH Alex | 78 |
70 | CHIRICO Luca | 58 |
77 | BAILLIFARD Valentin | 54 |