Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -2.5 * weight + 209
This means that on average for every extra kilogram weight a rider loses -2.5 positions in the result.
Norman Leth
1
75 kgJungels
2
70 kgKüng
3
83 kgChavanne
5
83 kgOlivier
8
64 kgKirsch
11
78 kgFolsach
12
81 kgTusveld
13
70 kgSuter
16
70 kgVan Rooy
19
70 kgMeijers
28
68 kgVliegen
29
70 kgStüssi
32
68 kgLienhard
36
73 kgGroßschartner
38
64 kgGogl
39
71 kgvan der Hoorn
41
73 kgPellaud
63
70 kgThalmann
70
61 kgZahálka
76
73 kgBaillifard
82
54 kgChirico
92
58 kg
1
75 kgJungels
2
70 kgKüng
3
83 kgChavanne
5
83 kgOlivier
8
64 kgKirsch
11
78 kgFolsach
12
81 kgTusveld
13
70 kgSuter
16
70 kgVan Rooy
19
70 kgMeijers
28
68 kgVliegen
29
70 kgStüssi
32
68 kgLienhard
36
73 kgGroßschartner
38
64 kgGogl
39
71 kgvan der Hoorn
41
73 kgPellaud
63
70 kgThalmann
70
61 kgZahálka
76
73 kgBaillifard
82
54 kgChirico
92
58 kg
Weight (KG) →
Result →
83
54
1
92
# | Rider | Weight (KG) |
---|---|---|
1 | NORMAN LETH Lasse | 75 |
2 | JUNGELS Bob | 70 |
3 | KÜNG Stefan | 83 |
5 | CHAVANNE Gabriel | 83 |
8 | OLIVIER Daan | 64 |
11 | KIRSCH Alex | 78 |
12 | FOLSACH Casper | 81 |
13 | TUSVELD Martijn | 70 |
16 | SUTER Gaël | 70 |
19 | VAN ROOY Kenneth | 70 |
28 | MEIJERS Jeroen | 68 |
29 | VLIEGEN Loïc | 70 |
32 | STÜSSI Colin | 68 |
36 | LIENHARD Fabian | 73 |
38 | GROßSCHARTNER Felix | 64 |
39 | GOGL Michael | 71 |
41 | VAN DER HOORN Taco | 73 |
63 | PELLAUD Simon | 70 |
70 | THALMANN Roland | 61 |
76 | ZAHÁLKA Matěj | 73 |
82 | BAILLIFARD Valentin | 54 |
92 | CHIRICO Luca | 58 |