Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 20
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Olivier
2
64 kgJungels
5
70 kgVliegen
6
70 kgChirico
7
58 kgSuter
10
70 kgChavanne
12
83 kgKüng
13
83 kgVan Rooy
16
70 kgStüssi
17
68 kgLienhard
18
73 kgZahálka
30
73 kgNorman Leth
35
75 kgBaillifard
36
54 kgKirsch
43
78 kgGroßschartner
47
64 kgTusveld
53
70 kgGogl
57
71 kgThalmann
65
61 kgvan der Hoorn
73
73 kgMeijers
74
68 kgPellaud
76
70 kgFolsach
87
81 kg
2
64 kgJungels
5
70 kgVliegen
6
70 kgChirico
7
58 kgSuter
10
70 kgChavanne
12
83 kgKüng
13
83 kgVan Rooy
16
70 kgStüssi
17
68 kgLienhard
18
73 kgZahálka
30
73 kgNorman Leth
35
75 kgBaillifard
36
54 kgKirsch
43
78 kgGroßschartner
47
64 kgTusveld
53
70 kgGogl
57
71 kgThalmann
65
61 kgvan der Hoorn
73
73 kgMeijers
74
68 kgPellaud
76
70 kgFolsach
87
81 kg
Weight (KG) →
Result →
83
54
2
87
# | Rider | Weight (KG) |
---|---|---|
2 | OLIVIER Daan | 64 |
5 | JUNGELS Bob | 70 |
6 | VLIEGEN Loïc | 70 |
7 | CHIRICO Luca | 58 |
10 | SUTER Gaël | 70 |
12 | CHAVANNE Gabriel | 83 |
13 | KÜNG Stefan | 83 |
16 | VAN ROOY Kenneth | 70 |
17 | STÜSSI Colin | 68 |
18 | LIENHARD Fabian | 73 |
30 | ZAHÁLKA Matěj | 73 |
35 | NORMAN LETH Lasse | 75 |
36 | BAILLIFARD Valentin | 54 |
43 | KIRSCH Alex | 78 |
47 | GROßSCHARTNER Felix | 64 |
53 | TUSVELD Martijn | 70 |
57 | GOGL Michael | 71 |
65 | THALMANN Roland | 61 |
73 | VAN DER HOORN Taco | 73 |
74 | MEIJERS Jeroen | 68 |
76 | PELLAUD Simon | 70 |
87 | FOLSACH Casper | 81 |