Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -3 * weight + 246
This means that on average for every extra kilogram weight a rider loses -3 positions in the result.
Cornelisse
1
73.5 kgWarlop
4
71 kgCastrique
6
81 kgTalen
15
76 kgJakobsen
17
78 kgLeysen
18
78 kgWouters
20
75 kgVan Der Beken
21
64 kgMaas
22
70 kgCeli
30
76 kgStockman
34
67 kgDe Poorter
43
68 kgMolly
45
61 kgTasset
46
63 kgDe Decker
47
68 kgDewulf
48
74 kgPlanckaert
52
69 kgVanhoucke
68
65 kgVan Nuffelen
95
64 kgVeltman
106
66 kg
1
73.5 kgWarlop
4
71 kgCastrique
6
81 kgTalen
15
76 kgJakobsen
17
78 kgLeysen
18
78 kgWouters
20
75 kgVan Der Beken
21
64 kgMaas
22
70 kgCeli
30
76 kgStockman
34
67 kgDe Poorter
43
68 kgMolly
45
61 kgTasset
46
63 kgDe Decker
47
68 kgDewulf
48
74 kgPlanckaert
52
69 kgVanhoucke
68
65 kgVan Nuffelen
95
64 kgVeltman
106
66 kg
Weight (KG) →
Result →
81
61
1
106
# | Rider | Weight (KG) |
---|---|---|
1 | CORNELISSE Mitchell | 73.5 |
4 | WARLOP Jordi | 71 |
6 | CASTRIQUE Jonas | 81 |
15 | TALEN Jordi | 76 |
17 | JAKOBSEN Fabio | 78 |
18 | LEYSEN Senne | 78 |
20 | WOUTERS Enzo | 75 |
21 | VAN DER BEKEN Arno | 64 |
22 | MAAS Jan | 70 |
30 | CELI Abe | 76 |
34 | STOCKMAN Abram | 67 |
43 | DE POORTER Maxime | 68 |
45 | MOLLY Kenny | 61 |
46 | TASSET Marvin | 63 |
47 | DE DECKER Alfdan | 68 |
48 | DEWULF Stan | 74 |
52 | PLANCKAERT Emiel | 69 |
68 | VANHOUCKE Harm | 65 |
95 | VAN NUFFELEN Glen | 64 |
106 | VELTMAN Milan | 66 |