Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.6 * weight + 146
This means that on average for every extra kilogram weight a rider loses -1.6 positions in the result.
Eenkhoorn
1
72 kgMengoulas
2
66 kgDewulf
3
74 kgWelten
4
81 kgGhys
6
72 kgCastrique
9
81 kgGressier
10
67 kgBeullens
11
79 kgD'heygere
17
76 kgTasset
22
63 kgSchelling
23
66 kgVerwilst
25
68 kgvan den Dool
28
68 kgDekker
29
80 kgVan Nuffelen
30
64 kgvan Bokhoven
43
79 kgOttevanger
44
74 kgStravers
45
73 kgOffermans
50
63 kgTulner
53
62 kgBrunel
69
70 kgMertens
88
67 kgVanhoucke
103
65 kg
1
72 kgMengoulas
2
66 kgDewulf
3
74 kgWelten
4
81 kgGhys
6
72 kgCastrique
9
81 kgGressier
10
67 kgBeullens
11
79 kgD'heygere
17
76 kgTasset
22
63 kgSchelling
23
66 kgVerwilst
25
68 kgvan den Dool
28
68 kgDekker
29
80 kgVan Nuffelen
30
64 kgvan Bokhoven
43
79 kgOttevanger
44
74 kgStravers
45
73 kgOffermans
50
63 kgTulner
53
62 kgBrunel
69
70 kgMertens
88
67 kgVanhoucke
103
65 kg
Weight (KG) →
Result →
81
62
1
103
# | Rider | Weight (KG) |
---|---|---|
1 | EENKHOORN Pascal | 72 |
2 | MENGOULAS Alex | 66 |
3 | DEWULF Stan | 74 |
4 | WELTEN Bram | 81 |
6 | GHYS Robbe | 72 |
9 | CASTRIQUE Jonas | 81 |
10 | GRESSIER Maxime | 67 |
11 | BEULLENS Cedric | 79 |
17 | D'HEYGERE Gil | 76 |
22 | TASSET Marvin | 63 |
23 | SCHELLING Ide | 66 |
25 | VERWILST Aaron | 68 |
28 | VAN DEN DOOL Jens | 68 |
29 | DEKKER David | 80 |
30 | VAN NUFFELEN Glen | 64 |
43 | VAN BOKHOVEN Ramon | 79 |
44 | OTTEVANGER Bas | 74 |
45 | STRAVERS Jarri | 73 |
50 | OFFERMANS Michiel | 63 |
53 | TULNER Rens | 62 |
69 | BRUNEL Alexys | 70 |
88 | MERTENS Julian | 67 |
103 | VANHOUCKE Harm | 65 |