Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 17
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Löwik
1
72 kgCasper
2
69 kgBruylandts
3
63 kgEisel
4
74 kgVaitkus
6
75 kgHinault
7
63 kgVansummeren
8
79 kgJégou
9
71 kgEdaleine
10
62 kgBäckstedt
12
94 kgRoesems
13
81 kgVoskamp
16
75 kgDekker
17
66 kgLjungqvist
18
73 kgAbakoumov
20
68 kgGeslin
22
68 kgHayman
23
78 kgDe Waele
24
62 kgMoreau
25
71 kgDe Weert
26
70 kgReihs
27
75 kgDevolder
28
72 kgBelohvoščiks
29
70 kg
1
72 kgCasper
2
69 kgBruylandts
3
63 kgEisel
4
74 kgVaitkus
6
75 kgHinault
7
63 kgVansummeren
8
79 kgJégou
9
71 kgEdaleine
10
62 kgBäckstedt
12
94 kgRoesems
13
81 kgVoskamp
16
75 kgDekker
17
66 kgLjungqvist
18
73 kgAbakoumov
20
68 kgGeslin
22
68 kgHayman
23
78 kgDe Waele
24
62 kgMoreau
25
71 kgDe Weert
26
70 kgReihs
27
75 kgDevolder
28
72 kgBelohvoščiks
29
70 kg
Weight (KG) →
Result →
94
62
1
29
# | Rider | Weight (KG) |
---|---|---|
1 | LÖWIK Gerben | 72 |
2 | CASPER Jimmy | 69 |
3 | BRUYLANDTS Dave | 63 |
4 | EISEL Bernhard | 74 |
6 | VAITKUS Tomas | 75 |
7 | HINAULT Sébastien | 63 |
8 | VANSUMMEREN Johan | 79 |
9 | JÉGOU Lilian | 71 |
10 | EDALEINE Christophe | 62 |
12 | BÄCKSTEDT Magnus | 94 |
13 | ROESEMS Bert | 81 |
16 | VOSKAMP Bart | 75 |
17 | DEKKER Erik | 66 |
18 | LJUNGQVIST Marcus | 73 |
20 | ABAKOUMOV Igor | 68 |
22 | GESLIN Anthony | 68 |
23 | HAYMAN Mathew | 78 |
24 | DE WAELE Fabien | 62 |
25 | MOREAU Christophe | 71 |
26 | DE WEERT Kevin | 70 |
27 | REIHS Michael | 75 |
28 | DEVOLDER Stijn | 72 |
29 | BELOHVOŠČIKS Raivis | 70 |