Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 5
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Löwik
1
72 kgCasper
2
69 kgBruylandts
3
63 kgEisel
4
74 kgHinault
6
63 kgVansummeren
7
79 kgJégou
8
71 kgEdaleine
9
62 kgBäckstedt
13
94 kgVaitkus
14
75 kgLjungqvist
15
73 kgAbakoumov
17
68 kgGeslin
19
68 kgHayman
20
78 kgDe Waele
21
62 kgDe Weert
22
70 kgReihs
23
75 kg
1
72 kgCasper
2
69 kgBruylandts
3
63 kgEisel
4
74 kgHinault
6
63 kgVansummeren
7
79 kgJégou
8
71 kgEdaleine
9
62 kgBäckstedt
13
94 kgVaitkus
14
75 kgLjungqvist
15
73 kgAbakoumov
17
68 kgGeslin
19
68 kgHayman
20
78 kgDe Waele
21
62 kgDe Weert
22
70 kgReihs
23
75 kg
Weight (KG) →
Result →
94
62
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | LÖWIK Gerben | 72 |
2 | CASPER Jimmy | 69 |
3 | BRUYLANDTS Dave | 63 |
4 | EISEL Bernhard | 74 |
6 | HINAULT Sébastien | 63 |
7 | VANSUMMEREN Johan | 79 |
8 | JÉGOU Lilian | 71 |
9 | EDALEINE Christophe | 62 |
13 | BÄCKSTEDT Magnus | 94 |
14 | VAITKUS Tomas | 75 |
15 | LJUNGQVIST Marcus | 73 |
17 | ABAKOUMOV Igor | 68 |
19 | GESLIN Anthony | 68 |
20 | HAYMAN Mathew | 78 |
21 | DE WAELE Fabien | 62 |
22 | DE WEERT Kevin | 70 |
23 | REIHS Michael | 75 |