Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 62
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Brennan
1
68 kgChamberlain
2
74 kgDe Schuyteneer
3
74 kgSentjens
4
85 kgWiggins
9
75 kgL'Hote
10
67 kgBush
11
58 kgPeace
12
64 kgRemijn
15
68 kgSchaper
18
69 kgScheldeman
20
66 kgSolen
24
67 kgMolenaar
25
68 kgSchoofs
26
68 kgŁątkowski
27
68 kgDe Bock
29
70 kgHemeryck
39
72 kgDe Vos
42
78 kgSmit
44
59 kgOmrzel
45
62 kgPera
48
68 kgSkok
63
65 kgVandevorst
76
74 kg
1
68 kgChamberlain
2
74 kgDe Schuyteneer
3
74 kgSentjens
4
85 kgWiggins
9
75 kgL'Hote
10
67 kgBush
11
58 kgPeace
12
64 kgRemijn
15
68 kgSchaper
18
69 kgScheldeman
20
66 kgSolen
24
67 kgMolenaar
25
68 kgSchoofs
26
68 kgŁątkowski
27
68 kgDe Bock
29
70 kgHemeryck
39
72 kgDe Vos
42
78 kgSmit
44
59 kgOmrzel
45
62 kgPera
48
68 kgSkok
63
65 kgVandevorst
76
74 kg
Weight (KG) →
Result →
85
58
1
76
# | Rider | Weight (KG) |
---|---|---|
1 | BRENNAN Matthew | 68 |
2 | CHAMBERLAIN Oscar | 74 |
3 | DE SCHUYTENEER Steffen | 74 |
4 | SENTJENS Sente | 85 |
9 | WIGGINS Ben | 75 |
10 | L'HOTE Antoine | 67 |
11 | BUSH Jacob | 58 |
12 | PEACE Oliver | 64 |
15 | REMIJN Senna | 68 |
18 | SCHAPER Joeri | 69 |
20 | SCHELDEMAN Xander | 66 |
24 | SOLEN Keije | 67 |
25 | MOLENAAR Ko | 68 |
26 | SCHOOFS Jasper | 68 |
27 | ŁĄTKOWSKI Dawid | 68 |
29 | DE BOCK Aless | 70 |
39 | HEMERYCK Wout | 72 |
42 | DE VOS Seppe | 78 |
44 | SMIT Stan | 59 |
45 | OMRZEL Jakob | 62 |
48 | PERA Marceli | 68 |
63 | SKOK Marcel | 65 |
76 | VANDEVORST Nio | 74 |