Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 14
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Peeters
1
76 kgde Jongh
3
76 kgMichaelsen
4
79 kgVan Lancker
5
67 kgKlier
7
72 kgHoffman
8
80 kgPiziks
10
70 kgCretskens
11
75 kgDe Clercq
12
80 kgRoesems
13
81 kgCorvers
16
77 kgBruylandts
17
63 kgRodriguez
19
68 kgHammond
22
71 kgWrolich
25
68 kgVan De Walle
26
74 kgVansevenant
31
65 kgBalčiūnas
33
90 kgOmloop
34
78 kgDe Neef
37
75 kg
1
76 kgde Jongh
3
76 kgMichaelsen
4
79 kgVan Lancker
5
67 kgKlier
7
72 kgHoffman
8
80 kgPiziks
10
70 kgCretskens
11
75 kgDe Clercq
12
80 kgRoesems
13
81 kgCorvers
16
77 kgBruylandts
17
63 kgRodriguez
19
68 kgHammond
22
71 kgWrolich
25
68 kgVan De Walle
26
74 kgVansevenant
31
65 kgBalčiūnas
33
90 kgOmloop
34
78 kgDe Neef
37
75 kg
Weight (KG) →
Result →
90
63
1
37
# | Rider | Weight (KG) |
---|---|---|
1 | PEETERS Wilfried | 76 |
3 | DE JONGH Steven | 76 |
4 | MICHAELSEN Lars | 79 |
5 | VAN LANCKER Kurt | 67 |
7 | KLIER Andreas | 72 |
8 | HOFFMAN Tristan | 80 |
10 | PIZIKS Arvis | 70 |
11 | CRETSKENS Wilfried | 75 |
12 | DE CLERCQ Hans | 80 |
13 | ROESEMS Bert | 81 |
16 | CORVERS Frank | 77 |
17 | BRUYLANDTS Dave | 63 |
19 | RODRIGUEZ Fred | 68 |
22 | HAMMOND Roger | 71 |
25 | WROLICH Peter | 68 |
26 | VAN DE WALLE Jurgen | 74 |
31 | VANSEVENANT Wim | 65 |
33 | BALČIŪNAS Linas | 90 |
34 | OMLOOP Geert | 78 |
37 | DE NEEF Steven | 75 |