Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.6 * weight + 233
This means that on average for every extra kilogram weight a rider loses 1.6 positions in the result.
Peeters
1
76 kgde Jongh
3
76 kgMichaelsen
4
79 kgVan Lancker
5
67 kgKlier
7
72 kgBruylandts
8
63 kgPiziks
10
70 kgHoffman
11
80 kgCorvers
14
77 kgRoesems
15
81 kgCretskens
16
75 kgDe Clercq
18
80 kgRodriguez
19
68 kgHammond
990
71 kgWrolich
990
68 kgVan De Walle
990
74 kgVansevenant
990
65 kgBalčiūnas
990
90 kgOmloop
990
78 kgDe Neef
990
75 kg
1
76 kgde Jongh
3
76 kgMichaelsen
4
79 kgVan Lancker
5
67 kgKlier
7
72 kgBruylandts
8
63 kgPiziks
10
70 kgHoffman
11
80 kgCorvers
14
77 kgRoesems
15
81 kgCretskens
16
75 kgDe Clercq
18
80 kgRodriguez
19
68 kgHammond
990
71 kgWrolich
990
68 kgVan De Walle
990
74 kgVansevenant
990
65 kgBalčiūnas
990
90 kgOmloop
990
78 kgDe Neef
990
75 kg
Weight (KG) →
Result →
90
63
1
990
# | Rider | Weight (KG) |
---|---|---|
1 | PEETERS Wilfried | 76 |
3 | DE JONGH Steven | 76 |
4 | MICHAELSEN Lars | 79 |
5 | VAN LANCKER Kurt | 67 |
7 | KLIER Andreas | 72 |
8 | BRUYLANDTS Dave | 63 |
10 | PIZIKS Arvis | 70 |
11 | HOFFMAN Tristan | 80 |
14 | CORVERS Frank | 77 |
15 | ROESEMS Bert | 81 |
16 | CRETSKENS Wilfried | 75 |
18 | DE CLERCQ Hans | 80 |
19 | RODRIGUEZ Fred | 68 |
990 | HAMMOND Roger | 71 |
990 | WROLICH Peter | 68 |
990 | VAN DE WALLE Jurgen | 74 |
990 | VANSEVENANT Wim | 65 |
990 | BALČIŪNAS Linas | 90 |
990 | OMLOOP Geert | 78 |
990 | DE NEEF Steven | 75 |