Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 41
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Hammond
1
71 kgKnaven
2
68 kgMichaelsen
3
79 kgvan Dijk
5
74 kgPankov
6
72 kgHayman
9
78 kgTeutenberg
11
66 kgCorvers
12
77 kgCapelle
13
75 kgOmloop
21
78 kgIvanov
22
73 kgRoesems
23
81 kgBoogerd
24
62 kgden Bakker
27
71 kgKroon
28
67 kgBoven
29
65 kgPiziks
30
70 kgKlier
31
72 kgWauters
32
73 kgVan Petegem
36
70 kgKoerts
37
78 kgGuyton
40
74 kg
1
71 kgKnaven
2
68 kgMichaelsen
3
79 kgvan Dijk
5
74 kgPankov
6
72 kgHayman
9
78 kgTeutenberg
11
66 kgCorvers
12
77 kgCapelle
13
75 kgOmloop
21
78 kgIvanov
22
73 kgRoesems
23
81 kgBoogerd
24
62 kgden Bakker
27
71 kgKroon
28
67 kgBoven
29
65 kgPiziks
30
70 kgKlier
31
72 kgWauters
32
73 kgVan Petegem
36
70 kgKoerts
37
78 kgGuyton
40
74 kg
Weight (KG) →
Result →
81
62
1
40
# | Rider | Weight (KG) |
---|---|---|
1 | HAMMOND Roger | 71 |
2 | KNAVEN Servais | 68 |
3 | MICHAELSEN Lars | 79 |
5 | VAN DIJK Stefan | 74 |
6 | PANKOV Oleg | 72 |
9 | HAYMAN Mathew | 78 |
11 | TEUTENBERG Sven | 66 |
12 | CORVERS Frank | 77 |
13 | CAPELLE Ludovic | 75 |
21 | OMLOOP Geert | 78 |
22 | IVANOV Sergei | 73 |
23 | ROESEMS Bert | 81 |
24 | BOOGERD Michael | 62 |
27 | DEN BAKKER Maarten | 71 |
28 | KROON Karsten | 67 |
29 | BOVEN Jan | 65 |
30 | PIZIKS Arvis | 70 |
31 | KLIER Andreas | 72 |
32 | WAUTERS Marc | 73 |
36 | VAN PETEGEM Peter | 70 |
37 | KOERTS Jans | 78 |
40 | GUYTON Scott | 74 |