Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -17.7 * weight + 1629
This means that on average for every extra kilogram weight a rider loses -17.7 positions in the result.
Museeuw
1
71 kgNeuville
2
85 kgDekker
4
66 kgNazon
5
74 kgKoerts
6
78 kgCapelle
8
75 kgCasper
9
69 kgPollack
10
77 kgLöwik
11
72 kgFlammang
14
80 kgGardeyn
15
75 kgStreel
16
69 kgVoskamp
17
75 kgMichaelsen
18
79 kgPronk
19
73 kgCretskens
990
75 kgHayman
990
78 kgVanlandschoot
990
67 kgRodriguez
990
68 kgOmloop
990
78 kgHaselbacher
990
69 kgPencolé
990
74 kg
1
71 kgNeuville
2
85 kgDekker
4
66 kgNazon
5
74 kgKoerts
6
78 kgCapelle
8
75 kgCasper
9
69 kgPollack
10
77 kgLöwik
11
72 kgFlammang
14
80 kgGardeyn
15
75 kgStreel
16
69 kgVoskamp
17
75 kgMichaelsen
18
79 kgPronk
19
73 kgCretskens
990
75 kgHayman
990
78 kgVanlandschoot
990
67 kgRodriguez
990
68 kgOmloop
990
78 kgHaselbacher
990
69 kgPencolé
990
74 kg
Weight (KG) →
Result →
85
66
1
990
# | Rider | Weight (KG) |
---|---|---|
1 | MUSEEUW Johan | 71 |
2 | NEUVILLE Jerome | 85 |
4 | DEKKER Erik | 66 |
5 | NAZON Jean-Patrick | 74 |
6 | KOERTS Jans | 78 |
8 | CAPELLE Ludovic | 75 |
9 | CASPER Jimmy | 69 |
10 | POLLACK Olaf | 77 |
11 | LÖWIK Gerben | 72 |
14 | FLAMMANG Tom | 80 |
15 | GARDEYN Gorik | 75 |
16 | STREEL Marc | 69 |
17 | VOSKAMP Bart | 75 |
18 | MICHAELSEN Lars | 79 |
19 | PRONK Matthé | 73 |
990 | CRETSKENS Wilfried | 75 |
990 | HAYMAN Mathew | 78 |
990 | VANLANDSCHOOT James | 67 |
990 | RODRIGUEZ Fred | 68 |
990 | OMLOOP Geert | 78 |
990 | HASELBACHER René | 69 |
990 | PENCOLÉ Franck | 74 |