Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.9 * weight + 348
This means that on average for every extra kilogram weight a rider loses -0.9 positions in the result.
Dekker
1
66 kgMuseeuw
3
71 kgPollack
4
77 kgMichaelsen
5
79 kgCretskens
7
75 kgCapelle
8
75 kgHayman
9
78 kgVanlandschoot
10
67 kgStreel
12
69 kgRodriguez
13
68 kgGardeyn
16
75 kgLöwik
17
72 kgOmloop
18
78 kgNazon
990
74 kgVoskamp
990
75 kgPronk
990
73 kgHaselbacher
990
69 kgPencolé
990
74 kg
1
66 kgMuseeuw
3
71 kgPollack
4
77 kgMichaelsen
5
79 kgCretskens
7
75 kgCapelle
8
75 kgHayman
9
78 kgVanlandschoot
10
67 kgStreel
12
69 kgRodriguez
13
68 kgGardeyn
16
75 kgLöwik
17
72 kgOmloop
18
78 kgNazon
990
74 kgVoskamp
990
75 kgPronk
990
73 kgHaselbacher
990
69 kgPencolé
990
74 kg
Weight (KG) →
Result →
79
66
1
990
# | Rider | Weight (KG) |
---|---|---|
1 | DEKKER Erik | 66 |
3 | MUSEEUW Johan | 71 |
4 | POLLACK Olaf | 77 |
5 | MICHAELSEN Lars | 79 |
7 | CRETSKENS Wilfried | 75 |
8 | CAPELLE Ludovic | 75 |
9 | HAYMAN Mathew | 78 |
10 | VANLANDSCHOOT James | 67 |
12 | STREEL Marc | 69 |
13 | RODRIGUEZ Fred | 68 |
16 | GARDEYN Gorik | 75 |
17 | LÖWIK Gerben | 72 |
18 | OMLOOP Geert | 78 |
990 | NAZON Jean-Patrick | 74 |
990 | VOSKAMP Bart | 75 |
990 | PRONK Matthé | 73 |
990 | HASELBACHER René | 69 |
990 | PENCOLÉ Franck | 74 |