Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight - 5
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
Bregnhøj
2
63 kgRootkin-Gray
3
67 kgKyffin
6
72 kgBrożyna
10
71 kgMadsen
15
67 kgMengel
17
65 kgKvam
19
72 kgDolven
21
74 kgKulset
22
58 kgToudal
23
72 kgDahlblom
24
62 kgDahl
25
62 kgKlevgård
29
74 kgMartinsen
30
62 kgMalmberg
31
68 kgReißig
34
60 kgAulstad
37
62 kgEskedal
38
63 kgLychou
41
78 kgStosz
44
70 kgPaterski
45
73 kgMård
46
68 kgLunder
47
78 kg
2
63 kgRootkin-Gray
3
67 kgKyffin
6
72 kgBrożyna
10
71 kgMadsen
15
67 kgMengel
17
65 kgKvam
19
72 kgDolven
21
74 kgKulset
22
58 kgToudal
23
72 kgDahlblom
24
62 kgDahl
25
62 kgKlevgård
29
74 kgMartinsen
30
62 kgMalmberg
31
68 kgReißig
34
60 kgAulstad
37
62 kgEskedal
38
63 kgLychou
41
78 kgStosz
44
70 kgPaterski
45
73 kgMård
46
68 kgLunder
47
78 kg
Weight (KG) →
Result →
78
58
2
47
# | Rider | Weight (KG) |
---|---|---|
2 | BREGNHØJ Mathias | 63 |
3 | ROOTKIN-GRAY Jack | 67 |
6 | KYFFIN Zeb | 72 |
10 | BROŻYNA Piotr | 71 |
15 | MADSEN Martin Toft | 67 |
17 | MENGEL Nikolaj | 65 |
19 | KVAM Kalle | 72 |
21 | DOLVEN Halvor | 74 |
22 | KULSET Johannes | 58 |
23 | TOUDAL Emil | 72 |
24 | DAHLBLOM Acke | 62 |
25 | DAHL Gustav Frederik | 62 |
29 | KLEVGÅRD Kristian | 74 |
30 | MARTINSEN Toralf Rydningen | 62 |
31 | MALMBERG Matias | 68 |
34 | REIßIG Patrick | 60 |
37 | AULSTAD Brage | 62 |
38 | ESKEDAL Vetle Torin | 63 |
41 | LYCHOU Viktor | 78 |
44 | STOSZ Patryk | 70 |
45 | PATERSKI Maciej | 73 |
46 | MÅRD Filip | 68 |
47 | LUNDER Eirik | 78 |