Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 11
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Mutsaars
1
67 kgDe Groote
2
71 kgCoenen
3
67 kgAbakoumov
4
68 kgHegreberg
5
72 kgSteegmans
7
82 kgBoonen
9
82 kgDe Waele
10
71 kgVerbrugghe
18
69 kgWillems
23
67 kgVan Huffel
29
66 kgSteurs
31
77 kgSijmens
37
69 kgVeneberg
39
75 kgten Dam
41
67 kgWielinga
46
68 kgVansummeren
54
79 kg
1
67 kgDe Groote
2
71 kgCoenen
3
67 kgAbakoumov
4
68 kgHegreberg
5
72 kgSteegmans
7
82 kgBoonen
9
82 kgDe Waele
10
71 kgVerbrugghe
18
69 kgWillems
23
67 kgVan Huffel
29
66 kgSteurs
31
77 kgSijmens
37
69 kgVeneberg
39
75 kgten Dam
41
67 kgWielinga
46
68 kgVansummeren
54
79 kg
Weight (KG) →
Result →
82
66
1
54
# | Rider | Weight (KG) |
---|---|---|
1 | MUTSAARS Ronald | 67 |
2 | DE GROOTE Thierry | 71 |
3 | COENEN Johan | 67 |
4 | ABAKOUMOV Igor | 68 |
5 | HEGREBERG Morten | 72 |
7 | STEEGMANS Gert | 82 |
9 | BOONEN Tom | 82 |
10 | DE WAELE Bert | 71 |
18 | VERBRUGGHE Ief | 69 |
23 | WILLEMS Frederik | 67 |
29 | VAN HUFFEL Wim | 66 |
31 | STEURS Geert | 77 |
37 | SIJMENS Nico | 69 |
39 | VENEBERG Thorwald | 75 |
41 | TEN DAM Laurens | 67 |
46 | WIELINGA Remmert | 68 |
54 | VANSUMMEREN Johan | 79 |