Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 78
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
de Maar
1
70 kgDuijn
2
73 kgMeersman
8
63 kgDe Groote
10
71 kgAernouts
13
60 kgStamsnijder
14
76 kgNeyens
17
74 kgVandenbergh
20
86 kgDe Fauw
22
77 kgNeirynck
26
71 kgDehaes
33
73 kgIngels
35
70 kgIsta
44
70 kgPauwels
58
65 kgGrosdent
75
74 kgWeylandt
91
72 kgGroenendaal
103
66 kg
1
70 kgDuijn
2
73 kgMeersman
8
63 kgDe Groote
10
71 kgAernouts
13
60 kgStamsnijder
14
76 kgNeyens
17
74 kgVandenbergh
20
86 kgDe Fauw
22
77 kgNeirynck
26
71 kgDehaes
33
73 kgIngels
35
70 kgIsta
44
70 kgPauwels
58
65 kgGrosdent
75
74 kgWeylandt
91
72 kgGroenendaal
103
66 kg
Weight (KG) →
Result →
86
60
1
103
# | Rider | Weight (KG) |
---|---|---|
1 | DE MAAR Marc | 70 |
2 | DUIJN Huub | 73 |
8 | MEERSMAN Gianni | 63 |
10 | DE GROOTE Thierry | 71 |
13 | AERNOUTS Bart | 60 |
14 | STAMSNIJDER Tom | 76 |
17 | NEYENS Maarten | 74 |
20 | VANDENBERGH Stijn | 86 |
22 | DE FAUW Dimitri | 77 |
26 | NEIRYNCK Kevin | 71 |
33 | DEHAES Kenny | 73 |
35 | INGELS Nick | 70 |
44 | ISTA Kevyn | 70 |
58 | PAUWELS Serge | 65 |
75 | GROSDENT William | 74 |
91 | WEYLANDT Wouter | 72 |
103 | GROENENDAAL Richard | 66 |