Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.3 * weight - 50
This means that on average for every extra kilogram weight a rider loses 1.3 positions in the result.
Rubio
1
81 kgReguigui
2
69 kgDougall
5
72 kgBuchmann
6
59 kgKozhatayev
8
62 kgKatyrin
10
65 kgVasilyev
13
70 kgRaileanu
18
63 kgTatarinov
21
67 kgŠiškevičius
24
70 kgKerkhof
30
76 kgBrusselman
48
76 kgKoch
52
75 kgSchnaidt
53
70 kgAhiyevich
59
70 kgKerby
65
71 kgSirironnachai
67
61 kgTanovițchii
80
73 kgGrigorev
83
73 kgde Man
86
68 kgBizhigitov
89
76 kg
1
81 kgReguigui
2
69 kgDougall
5
72 kgBuchmann
6
59 kgKozhatayev
8
62 kgKatyrin
10
65 kgVasilyev
13
70 kgRaileanu
18
63 kgTatarinov
21
67 kgŠiškevičius
24
70 kgKerkhof
30
76 kgBrusselman
48
76 kgKoch
52
75 kgSchnaidt
53
70 kgAhiyevich
59
70 kgKerby
65
71 kgSirironnachai
67
61 kgTanovițchii
80
73 kgGrigorev
83
73 kgde Man
86
68 kgBizhigitov
89
76 kg
Weight (KG) →
Result →
81
59
1
89
# | Rider | Weight (KG) |
---|---|---|
1 | RUBIO Diego | 81 |
2 | REGUIGUI Youcef | 69 |
5 | DOUGALL Nic | 72 |
6 | BUCHMANN Emanuel | 59 |
8 | KOZHATAYEV Bakhtiyar | 62 |
10 | KATYRIN Roman | 65 |
13 | VASILYEV Maksym | 70 |
18 | RAILEANU Cristian | 63 |
21 | TATARINOV Gennadiy | 67 |
24 | ŠIŠKEVIČIUS Paulius | 70 |
30 | KERKHOF Tim | 76 |
48 | BRUSSELMAN Twan | 76 |
52 | KOCH Jonas | 75 |
53 | SCHNAIDT Fabian | 70 |
59 | AHIYEVICH Aleh | 70 |
65 | KERBY Jordan | 71 |
67 | SIRIRONNACHAI Sarawut | 61 |
80 | TANOVIȚCHII Nicolae | 73 |
83 | GRIGOREV Aleksandr | 73 |
86 | DE MAN Jaap | 68 |
89 | BIZHIGITOV Zhandos | 76 |