Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight + 2
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Reguigui
2
69 kgVasilyev
3
70 kgRubio
4
81 kgRaileanu
6
63 kgTatarinov
7
67 kgŠiškevičius
10
70 kgDougall
14
72 kgKatyrin
19
65 kgKozhatayev
20
62 kgKerby
21
71 kgBuchmann
23
59 kgBizhigitov
25
76 kgTanovițchii
28
73 kgKerkhof
34
76 kgKoch
39
75 kgSirironnachai
43
61 kgBrusselman
52
76 kgde Man
59
68 kgGrigorev
69
73 kgAhiyevich
76
70 kgSchnaidt
82
70 kg
2
69 kgVasilyev
3
70 kgRubio
4
81 kgRaileanu
6
63 kgTatarinov
7
67 kgŠiškevičius
10
70 kgDougall
14
72 kgKatyrin
19
65 kgKozhatayev
20
62 kgKerby
21
71 kgBuchmann
23
59 kgBizhigitov
25
76 kgTanovițchii
28
73 kgKerkhof
34
76 kgKoch
39
75 kgSirironnachai
43
61 kgBrusselman
52
76 kgde Man
59
68 kgGrigorev
69
73 kgAhiyevich
76
70 kgSchnaidt
82
70 kg
Weight (KG) →
Result →
81
59
2
82
# | Rider | Weight (KG) |
---|---|---|
2 | REGUIGUI Youcef | 69 |
3 | VASILYEV Maksym | 70 |
4 | RUBIO Diego | 81 |
6 | RAILEANU Cristian | 63 |
7 | TATARINOV Gennadiy | 67 |
10 | ŠIŠKEVIČIUS Paulius | 70 |
14 | DOUGALL Nic | 72 |
19 | KATYRIN Roman | 65 |
20 | KOZHATAYEV Bakhtiyar | 62 |
21 | KERBY Jordan | 71 |
23 | BUCHMANN Emanuel | 59 |
25 | BIZHIGITOV Zhandos | 76 |
28 | TANOVIȚCHII Nicolae | 73 |
34 | KERKHOF Tim | 76 |
39 | KOCH Jonas | 75 |
43 | SIRIRONNACHAI Sarawut | 61 |
52 | BRUSSELMAN Twan | 76 |
59 | DE MAN Jaap | 68 |
69 | GRIGOREV Aleksandr | 73 |
76 | AHIYEVICH Aleh | 70 |
82 | SCHNAIDT Fabian | 70 |