Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight - 1
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
Tatarinov
1
67 kgVasilyev
2
70 kgRubio
5
81 kgKozhatayev
7
62 kgSchnaidt
9
70 kgReguigui
10
69 kgRaileanu
11
63 kgŠiškevičius
12
70 kgKatyrin
23
65 kgDougall
27
72 kgKerkhof
28
76 kgBizhigitov
31
76 kgBrusselman
32
76 kgKerby
33
71 kgde Man
35
68 kgBuchmann
43
59 kgSirironnachai
48
61 kgGrigorev
62
73 kgTanovițchii
67
73 kgKoch
71
75 kgAhiyevich
75
70 kg
1
67 kgVasilyev
2
70 kgRubio
5
81 kgKozhatayev
7
62 kgSchnaidt
9
70 kgReguigui
10
69 kgRaileanu
11
63 kgŠiškevičius
12
70 kgKatyrin
23
65 kgDougall
27
72 kgKerkhof
28
76 kgBizhigitov
31
76 kgBrusselman
32
76 kgKerby
33
71 kgde Man
35
68 kgBuchmann
43
59 kgSirironnachai
48
61 kgGrigorev
62
73 kgTanovițchii
67
73 kgKoch
71
75 kgAhiyevich
75
70 kg
Weight (KG) →
Result →
81
59
1
75
# | Rider | Weight (KG) |
---|---|---|
1 | TATARINOV Gennadiy | 67 |
2 | VASILYEV Maksym | 70 |
5 | RUBIO Diego | 81 |
7 | KOZHATAYEV Bakhtiyar | 62 |
9 | SCHNAIDT Fabian | 70 |
10 | REGUIGUI Youcef | 69 |
11 | RAILEANU Cristian | 63 |
12 | ŠIŠKEVIČIUS Paulius | 70 |
23 | KATYRIN Roman | 65 |
27 | DOUGALL Nic | 72 |
28 | KERKHOF Tim | 76 |
31 | BIZHIGITOV Zhandos | 76 |
32 | BRUSSELMAN Twan | 76 |
33 | KERBY Jordan | 71 |
35 | DE MAN Jaap | 68 |
43 | BUCHMANN Emanuel | 59 |
48 | SIRIRONNACHAI Sarawut | 61 |
62 | GRIGOREV Aleksandr | 73 |
67 | TANOVIȚCHII Nicolae | 73 |
71 | KOCH Jonas | 75 |
75 | AHIYEVICH Aleh | 70 |