Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.3 * weight - 69
This means that on average for every extra kilogram weight a rider loses 1.3 positions in the result.
Tatarinov
2
67 kgSchnaidt
4
70 kgVasilyev
5
70 kgReguigui
6
69 kgSirironnachai
7
61 kgRubio
9
81 kgŠiškevičius
10
70 kgKozhatayev
12
62 kgBuchmann
14
59 kgRaileanu
17
63 kgDougall
20
72 kgKatyrin
21
65 kgKerkhof
29
76 kgBizhigitov
45
76 kgTanovițchii
49
73 kgKoch
51
75 kgGrigorev
52
73 kg
2
67 kgSchnaidt
4
70 kgVasilyev
5
70 kgReguigui
6
69 kgSirironnachai
7
61 kgRubio
9
81 kgŠiškevičius
10
70 kgKozhatayev
12
62 kgBuchmann
14
59 kgRaileanu
17
63 kgDougall
20
72 kgKatyrin
21
65 kgKerkhof
29
76 kgBizhigitov
45
76 kgTanovițchii
49
73 kgKoch
51
75 kgGrigorev
52
73 kg
Weight (KG) →
Result →
81
59
2
52
# | Rider | Weight (KG) |
---|---|---|
2 | TATARINOV Gennadiy | 67 |
4 | SCHNAIDT Fabian | 70 |
5 | VASILYEV Maksym | 70 |
6 | REGUIGUI Youcef | 69 |
7 | SIRIRONNACHAI Sarawut | 61 |
9 | RUBIO Diego | 81 |
10 | ŠIŠKEVIČIUS Paulius | 70 |
12 | KOZHATAYEV Bakhtiyar | 62 |
14 | BUCHMANN Emanuel | 59 |
17 | RAILEANU Cristian | 63 |
20 | DOUGALL Nic | 72 |
21 | KATYRIN Roman | 65 |
29 | KERKHOF Tim | 76 |
45 | BIZHIGITOV Zhandos | 76 |
49 | TANOVIȚCHII Nicolae | 73 |
51 | KOCH Jonas | 75 |
52 | GRIGOREV Aleksandr | 73 |