Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight - 6
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
van Hummel
1
64 kgMugerli
2
68 kgButs
3
68 kgViganò
4
67 kgAverin
5
74 kgReguigui
6
69 kgMetlushenko
7
82 kgKrivtsov
8
72 kgBilbao
9
60 kgRogina
10
70 kgŠtimulak
12
64 kgKirsch
13
78 kgMas
14
69 kgEibegger
15
68 kgBizhigitov
16
76 kgBommel
17
75 kgConti
18
68 kgClarke
19
81 kgVasylyuk
21
65 kg
1
64 kgMugerli
2
68 kgButs
3
68 kgViganò
4
67 kgAverin
5
74 kgReguigui
6
69 kgMetlushenko
7
82 kgKrivtsov
8
72 kgBilbao
9
60 kgRogina
10
70 kgŠtimulak
12
64 kgKirsch
13
78 kgMas
14
69 kgEibegger
15
68 kgBizhigitov
16
76 kgBommel
17
75 kgConti
18
68 kgClarke
19
81 kgVasylyuk
21
65 kg
Weight (KG) →
Result →
82
60
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | VAN HUMMEL Kenny | 64 |
2 | MUGERLI Matej | 68 |
3 | BUTS Vitaliy | 68 |
4 | VIGANÒ Davide | 67 |
5 | AVERIN Maksym | 74 |
6 | REGUIGUI Youcef | 69 |
7 | METLUSHENKO Yuri | 82 |
8 | KRIVTSOV Dmytro | 72 |
9 | BILBAO Pello | 60 |
10 | ROGINA Radoslav | 70 |
12 | ŠTIMULAK Klemen | 64 |
13 | KIRSCH Alex | 78 |
14 | MAS Lluís | 69 |
15 | EIBEGGER Markus | 68 |
16 | BIZHIGITOV Zhandos | 76 |
17 | BOMMEL Henning | 75 |
18 | CONTI Samuele | 68 |
19 | CLARKE Will | 81 |
21 | VASYLYUK Andriy | 65 |