Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.2 * weight + 109
This means that on average for every extra kilogram weight a rider loses -1.2 positions in the result.
Tzortzakis
1
80 kgBellan
3
61 kgMihaylov
4
70 kgĐurić
7
78 kgČanecký
9
72 kgAndreev
11
63 kgNobel
15
78 kgCully
18
73 kgSuchev
19
68 kgMahďar
21
61 kgHristov
26
57 kgAleksandrov
31
62 kgJolidon
38
71 kgZegklis
42
57 kgKolev
48
64 kgRadoslavov
58
73 kgDyankov
59
61 kgDyankov
61
65 kgFarantakis
65
62 kg
1
80 kgBellan
3
61 kgMihaylov
4
70 kgĐurić
7
78 kgČanecký
9
72 kgAndreev
11
63 kgNobel
15
78 kgCully
18
73 kgSuchev
19
68 kgMahďar
21
61 kgHristov
26
57 kgAleksandrov
31
62 kgJolidon
38
71 kgZegklis
42
57 kgKolev
48
64 kgRadoslavov
58
73 kgDyankov
59
61 kgDyankov
61
65 kgFarantakis
65
62 kg
Weight (KG) →
Result →
80
57
1
65
# | Rider | Weight (KG) |
---|---|---|
1 | TZORTZAKIS Polychronis | 80 |
3 | BELLAN Juraj | 61 |
4 | MIHAYLOV Nikolay | 70 |
7 | ĐURIĆ Đorđe | 78 |
9 | ČANECKÝ Marek | 72 |
11 | ANDREEV Yordan | 63 |
15 | NOBEL Rick | 78 |
18 | CULLY Ján Andrej | 73 |
19 | SUCHEV Mario | 68 |
21 | MAHĎAR Martin | 61 |
26 | HRISTOV Stefan Koychev | 57 |
31 | ALEKSANDROV Yasen | 62 |
38 | JOLIDON Cédric | 71 |
42 | ZEGKLIS Nikolaos | 57 |
48 | KOLEV Yoan | 64 |
58 | RADOSLAVOV Kiril | 73 |
59 | DYANKOV Nikolay | 61 |
61 | DYANKOV Denis | 65 |
65 | FARANTAKIS Stylianos | 62 |