Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.7 * weight + 163
This means that on average for every extra kilogram weight a rider loses -1.7 positions in the result.
Kadri
2
66 kgWestphal
3
75 kgStamsnijder
5
76 kgPoulhiès
8
75 kgLund
9
65 kgLe Floch
13
67 kgGottfried
29
60 kgGajek
31
74 kgDi Grégorio
35
67 kgMartin
37
75 kgVelits
50
70 kgFröhlinger
52
62 kgZeits
61
73 kgTimmer
66
77 kgVelits
75
63 kgSchleck
78
68 kgRaimbekov
82
66 kgLangeveld
83
67 kgGeschke
102
64 kg
2
66 kgWestphal
3
75 kgStamsnijder
5
76 kgPoulhiès
8
75 kgLund
9
65 kgLe Floch
13
67 kgGottfried
29
60 kgGajek
31
74 kgDi Grégorio
35
67 kgMartin
37
75 kgVelits
50
70 kgFröhlinger
52
62 kgZeits
61
73 kgTimmer
66
77 kgVelits
75
63 kgSchleck
78
68 kgRaimbekov
82
66 kgLangeveld
83
67 kgGeschke
102
64 kg
Weight (KG) →
Result →
77
60
2
102
# | Rider | Weight (KG) |
---|---|---|
2 | KADRI Blel | 66 |
3 | WESTPHAL Carlo | 75 |
5 | STAMSNIJDER Tom | 76 |
8 | POULHIÈS Stéphane | 75 |
9 | LUND Anders | 65 |
13 | LE FLOCH Guillaume | 67 |
29 | GOTTFRIED Alexander | 60 |
31 | GAJEK Artur | 74 |
35 | DI GRÉGORIO Rémy | 67 |
37 | MARTIN Tony | 75 |
50 | VELITS Martin | 70 |
52 | FRÖHLINGER Johannes | 62 |
61 | ZEITS Andrey | 73 |
66 | TIMMER Albert | 77 |
75 | VELITS Peter | 63 |
78 | SCHLECK Andy | 68 |
82 | RAIMBEKOV Bolat | 66 |
83 | LANGEVELD Sebastian | 67 |
102 | GESCHKE Simon | 64 |