Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 52
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Martin
1
75 kgGottfried
3
60 kgWestphal
4
75 kgLangeveld
5
67 kgStamsnijder
8
76 kgDi Grégorio
10
67 kgKadri
12
66 kgVelits
15
63 kgVelits
25
70 kgSchleck
26
68 kgLe Floch
27
67 kgLund
30
65 kgGeschke
31
64 kgTimmer
37
77 kgGajek
40
74 kgZeits
42
73 kgPoulhiès
69
75 kgFröhlinger
74
62 kgRaimbekov
107
66 kg
1
75 kgGottfried
3
60 kgWestphal
4
75 kgLangeveld
5
67 kgStamsnijder
8
76 kgDi Grégorio
10
67 kgKadri
12
66 kgVelits
15
63 kgVelits
25
70 kgSchleck
26
68 kgLe Floch
27
67 kgLund
30
65 kgGeschke
31
64 kgTimmer
37
77 kgGajek
40
74 kgZeits
42
73 kgPoulhiès
69
75 kgFröhlinger
74
62 kgRaimbekov
107
66 kg
Weight (KG) →
Result →
77
60
1
107
# | Rider | Weight (KG) |
---|---|---|
1 | MARTIN Tony | 75 |
3 | GOTTFRIED Alexander | 60 |
4 | WESTPHAL Carlo | 75 |
5 | LANGEVELD Sebastian | 67 |
8 | STAMSNIJDER Tom | 76 |
10 | DI GRÉGORIO Rémy | 67 |
12 | KADRI Blel | 66 |
15 | VELITS Peter | 63 |
25 | VELITS Martin | 70 |
26 | SCHLECK Andy | 68 |
27 | LE FLOCH Guillaume | 67 |
30 | LUND Anders | 65 |
31 | GESCHKE Simon | 64 |
37 | TIMMER Albert | 77 |
40 | GAJEK Artur | 74 |
42 | ZEITS Andrey | 73 |
69 | POULHIÈS Stéphane | 75 |
74 | FRÖHLINGER Johannes | 62 |
107 | RAIMBEKOV Bolat | 66 |