Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.8 * weight + 93
This means that on average for every extra kilogram weight a rider loses -0.8 positions in the result.
Di Grégorio
1
67 kgGottfried
2
60 kgPoulhiès
3
75 kgWestphal
4
75 kgStamsnijder
11
76 kgGajek
13
74 kgVelits
19
63 kgZeits
24
73 kgFröhlinger
29
62 kgLangeveld
34
67 kgLe Floch
41
67 kgVelits
44
70 kgKadri
46
66 kgMartin
48
75 kgSchleck
60
68 kgLund
61
65 kgRaimbekov
74
66 kgTimmer
83
77 kgGeschke
113
64 kg
1
67 kgGottfried
2
60 kgPoulhiès
3
75 kgWestphal
4
75 kgStamsnijder
11
76 kgGajek
13
74 kgVelits
19
63 kgZeits
24
73 kgFröhlinger
29
62 kgLangeveld
34
67 kgLe Floch
41
67 kgVelits
44
70 kgKadri
46
66 kgMartin
48
75 kgSchleck
60
68 kgLund
61
65 kgRaimbekov
74
66 kgTimmer
83
77 kgGeschke
113
64 kg
Weight (KG) →
Result →
77
60
1
113
# | Rider | Weight (KG) |
---|---|---|
1 | DI GRÉGORIO Rémy | 67 |
2 | GOTTFRIED Alexander | 60 |
3 | POULHIÈS Stéphane | 75 |
4 | WESTPHAL Carlo | 75 |
11 | STAMSNIJDER Tom | 76 |
13 | GAJEK Artur | 74 |
19 | VELITS Peter | 63 |
24 | ZEITS Andrey | 73 |
29 | FRÖHLINGER Johannes | 62 |
34 | LANGEVELD Sebastian | 67 |
41 | LE FLOCH Guillaume | 67 |
44 | VELITS Martin | 70 |
46 | KADRI Blel | 66 |
48 | MARTIN Tony | 75 |
60 | SCHLECK Andy | 68 |
61 | LUND Anders | 65 |
74 | RAIMBEKOV Bolat | 66 |
83 | TIMMER Albert | 77 |
113 | GESCHKE Simon | 64 |