Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.8 * weight + 171
This means that on average for every extra kilogram weight a rider loses -1.8 positions in the result.
Kittel
4
82 kgKeizer
6
72 kgDegenkolb
8
82 kgBrändle
10
80 kgVermeltfoort
12
85 kgHesselbarth
15
65 kgBarton
22
77 kgSchorn
32
72 kgCanola
41
66 kgBichlmann
44
72 kgKump
49
68 kgAgostini
50
62 kgKrizek
54
74 kgJanse van Rensburg
70
74 kgFavilli
75
61 kgZoidl
78
63 kgRobert
80
68 kgSelig
83
80 kgBoem
94
75 kg
4
82 kgKeizer
6
72 kgDegenkolb
8
82 kgBrändle
10
80 kgVermeltfoort
12
85 kgHesselbarth
15
65 kgBarton
22
77 kgSchorn
32
72 kgCanola
41
66 kgBichlmann
44
72 kgKump
49
68 kgAgostini
50
62 kgKrizek
54
74 kgJanse van Rensburg
70
74 kgFavilli
75
61 kgZoidl
78
63 kgRobert
80
68 kgSelig
83
80 kgBoem
94
75 kg
Weight (KG) →
Result →
85
61
4
94
# | Rider | Weight (KG) |
---|---|---|
4 | KITTEL Marcel | 82 |
6 | KEIZER Martijn | 72 |
8 | DEGENKOLB John | 82 |
10 | BRÄNDLE Matthias | 80 |
12 | VERMELTFOORT Coen | 85 |
15 | HESSELBARTH David | 65 |
22 | BARTON Chris | 77 |
32 | SCHORN Daniel | 72 |
41 | CANOLA Marco | 66 |
44 | BICHLMANN Daniel | 72 |
49 | KUMP Marko | 68 |
50 | AGOSTINI Stefano | 62 |
54 | KRIZEK Matthias | 74 |
70 | JANSE VAN RENSBURG Reinardt | 74 |
75 | FAVILLI Elia | 61 |
78 | ZOIDL Riccardo | 63 |
80 | ROBERT Fréderique | 68 |
83 | SELIG Rüdiger | 80 |
94 | BOEM Nicola | 75 |