Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.3 * weight + 139
This means that on average for every extra kilogram weight a rider loses -1.3 positions in the result.
Kump
3
68 kgAgostini
9
62 kgBoem
13
75 kgKrizek
14
74 kgDegenkolb
15
82 kgBarton
17
77 kgSchorn
18
72 kgBrändle
19
80 kgJanse van Rensburg
26
74 kgVermeltfoort
31
85 kgKittel
32
82 kgHesselbarth
42
65 kgKeizer
49
72 kgCanola
60
66 kgBichlmann
64
72 kgFavilli
78
61 kgSummerhill
81
70 kgZoidl
82
63 kgSelig
88
80 kgRobert
94
68 kg
3
68 kgAgostini
9
62 kgBoem
13
75 kgKrizek
14
74 kgDegenkolb
15
82 kgBarton
17
77 kgSchorn
18
72 kgBrändle
19
80 kgJanse van Rensburg
26
74 kgVermeltfoort
31
85 kgKittel
32
82 kgHesselbarth
42
65 kgKeizer
49
72 kgCanola
60
66 kgBichlmann
64
72 kgFavilli
78
61 kgSummerhill
81
70 kgZoidl
82
63 kgSelig
88
80 kgRobert
94
68 kg
Weight (KG) →
Result →
85
61
3
94
# | Rider | Weight (KG) |
---|---|---|
3 | KUMP Marko | 68 |
9 | AGOSTINI Stefano | 62 |
13 | BOEM Nicola | 75 |
14 | KRIZEK Matthias | 74 |
15 | DEGENKOLB John | 82 |
17 | BARTON Chris | 77 |
18 | SCHORN Daniel | 72 |
19 | BRÄNDLE Matthias | 80 |
26 | JANSE VAN RENSBURG Reinardt | 74 |
31 | VERMELTFOORT Coen | 85 |
32 | KITTEL Marcel | 82 |
42 | HESSELBARTH David | 65 |
49 | KEIZER Martijn | 72 |
60 | CANOLA Marco | 66 |
64 | BICHLMANN Daniel | 72 |
78 | FAVILLI Elia | 61 |
81 | SUMMERHILL Daniel | 70 |
82 | ZOIDL Riccardo | 63 |
88 | SELIG Rüdiger | 80 |
94 | ROBERT Fréderique | 68 |