Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.9 * weight + 187
This means that on average for every extra kilogram weight a rider loses -1.9 positions in the result.
Kittel
1
82 kgKeizer
2
72 kgDegenkolb
7
82 kgBrändle
8
80 kgVermeltfoort
9
85 kgHesselbarth
19
65 kgBarton
24
77 kgSchorn
46
72 kgBoem
49
75 kgCanola
50
66 kgFavilli
54
61 kgRobert
64
68 kgAgostini
66
62 kgZoidl
70
63 kgKump
71
68 kgKrizek
73
74 kgSelig
88
80 kgSummerhill
99
70 kgJanse van Rensburg
103
74 kg
1
82 kgKeizer
2
72 kgDegenkolb
7
82 kgBrändle
8
80 kgVermeltfoort
9
85 kgHesselbarth
19
65 kgBarton
24
77 kgSchorn
46
72 kgBoem
49
75 kgCanola
50
66 kgFavilli
54
61 kgRobert
64
68 kgAgostini
66
62 kgZoidl
70
63 kgKump
71
68 kgKrizek
73
74 kgSelig
88
80 kgSummerhill
99
70 kgJanse van Rensburg
103
74 kg
Weight (KG) →
Result →
85
61
1
103
# | Rider | Weight (KG) |
---|---|---|
1 | KITTEL Marcel | 82 |
2 | KEIZER Martijn | 72 |
7 | DEGENKOLB John | 82 |
8 | BRÄNDLE Matthias | 80 |
9 | VERMELTFOORT Coen | 85 |
19 | HESSELBARTH David | 65 |
24 | BARTON Chris | 77 |
46 | SCHORN Daniel | 72 |
49 | BOEM Nicola | 75 |
50 | CANOLA Marco | 66 |
54 | FAVILLI Elia | 61 |
64 | ROBERT Fréderique | 68 |
66 | AGOSTINI Stefano | 62 |
70 | ZOIDL Riccardo | 63 |
71 | KUMP Marko | 68 |
73 | KRIZEK Matthias | 74 |
88 | SELIG Rüdiger | 80 |
99 | SUMMERHILL Daniel | 70 |
103 | JANSE VAN RENSBURG Reinardt | 74 |