Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 87
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Robert
6
68 kgSchorn
8
72 kgFavilli
11
61 kgKump
23
68 kgKittel
33
82 kgDegenkolb
36
82 kgSelig
38
80 kgVermeltfoort
48
85 kgHesselbarth
50
65 kgBarton
52
77 kgBrändle
53
80 kgJanse van Rensburg
54
74 kgKrizek
55
74 kgKeizer
64
72 kgAgostini
75
62 kgCanola
82
66 kgSummerhill
83
70 kgZoidl
102
63 kgBoem
113
75 kg
6
68 kgSchorn
8
72 kgFavilli
11
61 kgKump
23
68 kgKittel
33
82 kgDegenkolb
36
82 kgSelig
38
80 kgVermeltfoort
48
85 kgHesselbarth
50
65 kgBarton
52
77 kgBrändle
53
80 kgJanse van Rensburg
54
74 kgKrizek
55
74 kgKeizer
64
72 kgAgostini
75
62 kgCanola
82
66 kgSummerhill
83
70 kgZoidl
102
63 kgBoem
113
75 kg
Weight (KG) →
Result →
85
61
6
113
# | Rider | Weight (KG) |
---|---|---|
6 | ROBERT Fréderique | 68 |
8 | SCHORN Daniel | 72 |
11 | FAVILLI Elia | 61 |
23 | KUMP Marko | 68 |
33 | KITTEL Marcel | 82 |
36 | DEGENKOLB John | 82 |
38 | SELIG Rüdiger | 80 |
48 | VERMELTFOORT Coen | 85 |
50 | HESSELBARTH David | 65 |
52 | BARTON Chris | 77 |
53 | BRÄNDLE Matthias | 80 |
54 | JANSE VAN RENSBURG Reinardt | 74 |
55 | KRIZEK Matthias | 74 |
64 | KEIZER Martijn | 72 |
75 | AGOSTINI Stefano | 62 |
82 | CANOLA Marco | 66 |
83 | SUMMERHILL Daniel | 70 |
102 | ZOIDL Riccardo | 63 |
113 | BOEM Nicola | 75 |