Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.8 * weight + 95
This means that on average for every extra kilogram weight a rider loses -0.8 positions in the result.
Robert
1
68 kgVermeltfoort
4
85 kgSchorn
16
72 kgAgostini
18
62 kgDegenkolb
23
82 kgJanse van Rensburg
24
74 kgCanola
26
66 kgBrändle
28
80 kgBarton
30
77 kgSelig
31
80 kgBoem
35
75 kgHesselbarth
41
65 kgFavilli
52
61 kgKump
53
68 kgKittel
54
82 kgKrizek
55
74 kgKeizer
58
72 kgBichlmann
62
72 kgZoidl
78
63 kg
1
68 kgVermeltfoort
4
85 kgSchorn
16
72 kgAgostini
18
62 kgDegenkolb
23
82 kgJanse van Rensburg
24
74 kgCanola
26
66 kgBrändle
28
80 kgBarton
30
77 kgSelig
31
80 kgBoem
35
75 kgHesselbarth
41
65 kgFavilli
52
61 kgKump
53
68 kgKittel
54
82 kgKrizek
55
74 kgKeizer
58
72 kgBichlmann
62
72 kgZoidl
78
63 kg
Weight (KG) →
Result →
85
61
1
78
# | Rider | Weight (KG) |
---|---|---|
1 | ROBERT Fréderique | 68 |
4 | VERMELTFOORT Coen | 85 |
16 | SCHORN Daniel | 72 |
18 | AGOSTINI Stefano | 62 |
23 | DEGENKOLB John | 82 |
24 | JANSE VAN RENSBURG Reinardt | 74 |
26 | CANOLA Marco | 66 |
28 | BRÄNDLE Matthias | 80 |
30 | BARTON Chris | 77 |
31 | SELIG Rüdiger | 80 |
35 | BOEM Nicola | 75 |
41 | HESSELBARTH David | 65 |
52 | FAVILLI Elia | 61 |
53 | KUMP Marko | 68 |
54 | KITTEL Marcel | 82 |
55 | KRIZEK Matthias | 74 |
58 | KEIZER Martijn | 72 |
62 | BICHLMANN Daniel | 72 |
78 | ZOIDL Riccardo | 63 |