Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.5 * weight + 130
This means that on average for every extra kilogram weight a rider loses -1.5 positions in the result.
Norman Leth
1
75 kgArndt
3
77.5 kgSütterlin
4
78 kgKoch
5
69 kgVan Keirsbulck
6
89 kgDe Jonghe
7
69 kgValgren
8
71 kgLudvigsson
12
76 kgChavanne
15
83 kgKirsch
18
78 kgSchwarzmann
24
69 kgKrieger
25
71 kgKrauwel
27
77 kgMager
34
60 kgWerda
36
66 kgvan Goethem
41
77 kgZubov
47
72 kgMagnusson
48
71 kgSavitskiy
50
72 kgHoller
69
58 kg
1
75 kgArndt
3
77.5 kgSütterlin
4
78 kgKoch
5
69 kgVan Keirsbulck
6
89 kgDe Jonghe
7
69 kgValgren
8
71 kgLudvigsson
12
76 kgChavanne
15
83 kgKirsch
18
78 kgSchwarzmann
24
69 kgKrieger
25
71 kgKrauwel
27
77 kgMager
34
60 kgWerda
36
66 kgvan Goethem
41
77 kgZubov
47
72 kgMagnusson
48
71 kgSavitskiy
50
72 kgHoller
69
58 kg
Weight (KG) →
Result →
89
58
1
69
# | Rider | Weight (KG) |
---|---|---|
1 | NORMAN LETH Lasse | 75 |
3 | ARNDT Nikias | 77.5 |
4 | SÜTTERLIN Jasha | 78 |
5 | KOCH Michel | 69 |
6 | VAN KEIRSBULCK Guillaume | 89 |
7 | DE JONGHE Kevin | 69 |
8 | VALGREN Michael | 71 |
12 | LUDVIGSSON Tobias | 76 |
15 | CHAVANNE Gabriel | 83 |
18 | KIRSCH Alex | 78 |
24 | SCHWARZMANN Michael | 69 |
25 | KRIEGER Alexander | 71 |
27 | KRAUWEL Bas | 77 |
34 | MAGER Christian | 60 |
36 | WERDA Maximilian | 66 |
41 | VAN GOETHEM Brian | 77 |
47 | ZUBOV Matvey | 72 |
48 | MAGNUSSON Kim | 71 |
50 | SAVITSKIY Ivan | 72 |
69 | HOLLER Nikodemus | 58 |