Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 31
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Norman Leth
2
75 kgArndt
3
77.5 kgKrauwel
4
77 kgKrieger
5
71 kgSavitskiy
7
72 kgZubov
12
72 kgKoch
13
69 kgSchwarzmann
14
69 kgHoller
19
58 kgVan Keirsbulck
28
89 kgSütterlin
35
78 kgLudvigsson
38
76 kgChavanne
46
83 kgMager
49
60 kgDe Jonghe
51
69 kgMagnusson
52
71 kgValgren
58
71 kgWerda
72
66 kgvan Goethem
82
77 kgKirsch
84
78 kg
2
75 kgArndt
3
77.5 kgKrauwel
4
77 kgKrieger
5
71 kgSavitskiy
7
72 kgZubov
12
72 kgKoch
13
69 kgSchwarzmann
14
69 kgHoller
19
58 kgVan Keirsbulck
28
89 kgSütterlin
35
78 kgLudvigsson
38
76 kgChavanne
46
83 kgMager
49
60 kgDe Jonghe
51
69 kgMagnusson
52
71 kgValgren
58
71 kgWerda
72
66 kgvan Goethem
82
77 kgKirsch
84
78 kg
Weight (KG) →
Result →
89
58
2
84
# | Rider | Weight (KG) |
---|---|---|
2 | NORMAN LETH Lasse | 75 |
3 | ARNDT Nikias | 77.5 |
4 | KRAUWEL Bas | 77 |
5 | KRIEGER Alexander | 71 |
7 | SAVITSKIY Ivan | 72 |
12 | ZUBOV Matvey | 72 |
13 | KOCH Michel | 69 |
14 | SCHWARZMANN Michael | 69 |
19 | HOLLER Nikodemus | 58 |
28 | VAN KEIRSBULCK Guillaume | 89 |
35 | SÜTTERLIN Jasha | 78 |
38 | LUDVIGSSON Tobias | 76 |
46 | CHAVANNE Gabriel | 83 |
49 | MAGER Christian | 60 |
51 | DE JONGHE Kevin | 69 |
52 | MAGNUSSON Kim | 71 |
58 | VALGREN Michael | 71 |
72 | WERDA Maximilian | 66 |
82 | VAN GOETHEM Brian | 77 |
84 | KIRSCH Alex | 78 |