Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 23
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Sütterlin
1
78 kgJungels
3
70 kgAdams
4
66 kgSkjerping
5
71 kgMager
7
60 kgBystrøm
15
73 kgFolsach
16
81 kgKirsch
17
78 kgZepuntke
19
76 kgEnger
20
69 kgWalscheid
24
90 kgZabel
28
81 kgMagnusson
37
71 kgBiedermann
39
67 kgWolf
49
85 kgBeyer
50
75 kgPeelaers
54
75 kgHoelgaard
55
77 kgKnaup
64
61 kgDegreve
76
72 kg
1
78 kgJungels
3
70 kgAdams
4
66 kgSkjerping
5
71 kgMager
7
60 kgBystrøm
15
73 kgFolsach
16
81 kgKirsch
17
78 kgZepuntke
19
76 kgEnger
20
69 kgWalscheid
24
90 kgZabel
28
81 kgMagnusson
37
71 kgBiedermann
39
67 kgWolf
49
85 kgBeyer
50
75 kgPeelaers
54
75 kgHoelgaard
55
77 kgKnaup
64
61 kgDegreve
76
72 kg
Weight (KG) →
Result →
90
60
1
76
# | Rider | Weight (KG) |
---|---|---|
1 | SÜTTERLIN Jasha | 78 |
3 | JUNGELS Bob | 70 |
4 | ADAMS Jens | 66 |
5 | SKJERPING Kristoffer | 71 |
7 | MAGER Christian | 60 |
15 | BYSTRØM Sven Erik | 73 |
16 | FOLSACH Casper | 81 |
17 | KIRSCH Alex | 78 |
19 | ZEPUNTKE Ruben | 76 |
20 | ENGER Sondre Holst | 69 |
24 | WALSCHEID Max | 90 |
28 | ZABEL Rick | 81 |
37 | MAGNUSSON Kim | 71 |
39 | BIEDERMANN Daniel | 67 |
49 | WOLF Justin | 85 |
50 | BEYER Maximilian | 75 |
54 | PEELAERS Jeff | 75 |
55 | HOELGAARD Daniel | 77 |
64 | KNAUP Tobias | 61 |
76 | DEGREVE Martijn | 72 |