Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.6 * weight - 8
This means that on average for every extra kilogram weight a rider loses 0.6 positions in the result.
Sütterlin
3
78 kgJungels
4
70 kgZepuntke
5
76 kgAdams
6
66 kgSkjerping
9
71 kgMager
13
60 kgZabel
16
81 kgEnger
17
69 kgGalta
22
78 kgBystrøm
27
73 kgPeelaers
35
75 kgMagnusson
36
71 kgWalscheid
47
90 kgHoelgaard
49
77 kgWolf
57
85 kgBeyer
59
75 kgBiedermann
66
67 kgKnaup
68
61 kgFolsach
75
81 kgKirsch
80
78 kgDegreve
93
72 kg
3
78 kgJungels
4
70 kgZepuntke
5
76 kgAdams
6
66 kgSkjerping
9
71 kgMager
13
60 kgZabel
16
81 kgEnger
17
69 kgGalta
22
78 kgBystrøm
27
73 kgPeelaers
35
75 kgMagnusson
36
71 kgWalscheid
47
90 kgHoelgaard
49
77 kgWolf
57
85 kgBeyer
59
75 kgBiedermann
66
67 kgKnaup
68
61 kgFolsach
75
81 kgKirsch
80
78 kgDegreve
93
72 kg
Weight (KG) →
Result →
90
60
3
93
# | Rider | Weight (KG) |
---|---|---|
3 | SÜTTERLIN Jasha | 78 |
4 | JUNGELS Bob | 70 |
5 | ZEPUNTKE Ruben | 76 |
6 | ADAMS Jens | 66 |
9 | SKJERPING Kristoffer | 71 |
13 | MAGER Christian | 60 |
16 | ZABEL Rick | 81 |
17 | ENGER Sondre Holst | 69 |
22 | GALTA Fredrik Strand | 78 |
27 | BYSTRØM Sven Erik | 73 |
35 | PEELAERS Jeff | 75 |
36 | MAGNUSSON Kim | 71 |
47 | WALSCHEID Max | 90 |
49 | HOELGAARD Daniel | 77 |
57 | WOLF Justin | 85 |
59 | BEYER Maximilian | 75 |
66 | BIEDERMANN Daniel | 67 |
68 | KNAUP Tobias | 61 |
75 | FOLSACH Casper | 81 |
80 | KIRSCH Alex | 78 |
93 | DEGREVE Martijn | 72 |